Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
import json | |
import os | |
from PIL import Image | |
from diffusers import FluxKontextPipeline | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files | |
from safetensors.torch import load_file | |
import requests | |
import re | |
# Load Kontext model | |
MAX_SEED = np.iinfo(np.int32).max | |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs) | |
try: | |
with open("flux_loras.json", "r") as file: | |
data = json.load(file) | |
flux_loras_raw = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item.get("trigger_word", ""), | |
"trigger_position": item.get("trigger_position", "prepend"), | |
"weights": item.get("weights", "pytorch_lora_weights.safetensors"), | |
"likes": item.get("likes", 0), | |
} | |
for item in data | |
] | |
print(f"Successfully loaded {len(flux_loras_raw)} LoRAs from JSON") | |
except Exception as e: | |
print(f"Error loading flux_loras.json: {e}") | |
print("Using sample LoRA data instead...") | |
# Sample LoRA data with working repositories | |
flux_loras_raw = [ | |
{ | |
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/photo-1586902197503-e71026292412.jpeg", | |
"title": "Flux Koda", | |
"repo": "alvdansen/flux-koda", | |
"trigger_word": "flmft style", | |
"weights": "flux_lora.safetensors", | |
"likes": 100 | |
}, | |
{ | |
"image": "https://huggingface.co/multimodalart/flux-tarot-v1/resolve/main/images/e5f2761e5a474e52ab11b1c9246c9a30.png", | |
"title": "Tarot Cards", | |
"repo": "multimodalart/flux-tarot-v1", | |
"trigger_word": "in the style of TOK a trtcrd tarot style", | |
"weights": "flux_tarot_v1_lora.safetensors", | |
"likes": 90 | |
}, | |
{ | |
"image": "https://huggingface.co/Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style/resolve/main/d13591878de740648a8f29b836e16ff2.jpeg", | |
"title": "Paper Cutout", | |
"repo": "Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style", | |
"trigger_word": "Paper Cutout Style", | |
"weights": "Flux_1_Dev_LoRA_Paper-Cutout-Style.safetensors", | |
"likes": 80 | |
}, | |
{ | |
"image": "https://huggingface.co/alvdansen/frosting_lane_flux/resolve/main/images/content%20-%202024-08-11T010011.238.jpeg", | |
"title": "Frosting Lane", | |
"repo": "alvdansen/frosting_lane_flux", | |
"trigger_word": "frstingln illustration", | |
"weights": "flux_lora_frosting_lane_flux_000002500.safetensors", | |
"likes": 70 | |
}, | |
{ | |
"image": "https://huggingface.co/davisbro/flux-watercolor/resolve/main/images/wc2.png", | |
"title": "Watercolor", | |
"repo": "davisbro/flux-watercolor", | |
"trigger_word": "watercolor style", | |
"weights": "flux_watercolor.safetensors", | |
"likes": 60 | |
} | |
] | |
# Global variables for LoRA management | |
current_lora = None | |
lora_cache = {} | |
def load_lora_weights(repo_id, weights_filename): | |
"""Load LoRA weights from HuggingFace""" | |
try: | |
# First try with the specified filename | |
try: | |
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) | |
if repo_id not in lora_cache: | |
lora_cache[repo_id] = lora_path | |
return lora_path | |
except Exception as e: | |
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...") | |
# If the specified file doesn't exist, try to find any .safetensors file | |
from huggingface_hub import list_repo_files | |
try: | |
files = list_repo_files(repo_id) | |
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()] | |
if not safetensors_files: | |
# Try without 'lora' in filename | |
safetensors_files = [f for f in files if f.endswith('.safetensors')] | |
if safetensors_files: | |
# Try the first available file | |
for file in safetensors_files: | |
try: | |
print(f"Trying alternative file: {file}") | |
lora_path = hf_hub_download(repo_id=repo_id, filename=file) | |
if repo_id not in lora_cache: | |
lora_cache[repo_id] = lora_path | |
print(f"Successfully loaded alternative LoRA file: {file}") | |
return lora_path | |
except: | |
continue | |
print(f"No suitable LoRA files found in {repo_id}") | |
return None | |
except Exception as list_error: | |
print(f"Error listing files in repo {repo_id}: {list_error}") | |
return None | |
except Exception as e: | |
print(f"Error loading LoRA from {repo_id}: {e}") | |
return None | |
def update_selection(selected_state: gr.SelectData, flux_loras): | |
"""Update UI when a LoRA is selected""" | |
if selected_state.index >= len(flux_loras): | |
return "### No LoRA selected", gr.update(), None | |
lora_repo = flux_loras[selected_state.index]["repo"] | |
trigger_word = flux_loras[selected_state.index]["trigger_word"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'" | |
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index | |
def get_huggingface_lora(link): | |
"""Download LoRA from HuggingFace link""" | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
try: | |
model_card = ModelCard.load(link) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
# Try to find the correct safetensors file | |
files = list_repo_files(link) | |
safetensors_files = [f for f in files if f.endswith('.safetensors')] | |
# Prioritize files with 'lora' in the name | |
lora_files = [f for f in safetensors_files if 'lora' in f.lower()] | |
if lora_files: | |
safetensors_file = lora_files[0] | |
elif safetensors_files: | |
safetensors_file = safetensors_files[0] | |
else: | |
# Try .bin files as fallback | |
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()] | |
if bin_files: | |
safetensors_file = bin_files[0] | |
else: | |
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback | |
print(f"Found LoRA file: {safetensors_file} in {link}") | |
return split_link[1], safetensors_file, trigger_word | |
except Exception as e: | |
print(f"Error in get_huggingface_lora: {e}") | |
# Try basic detection | |
try: | |
files = list_repo_files(link) | |
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors") | |
return split_link[1], safetensors_file, "" | |
except: | |
raise Exception(f"Error loading LoRA: {e}") | |
else: | |
raise Exception("Invalid HuggingFace repository format") | |
def load_custom_lora(link): | |
"""Load custom LoRA from user input""" | |
if not link: | |
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None | |
try: | |
repo_name, weights_file, trigger_word = get_huggingface_lora(link) | |
card = f''' | |
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;"> | |
<span><strong>Loaded custom LoRA:</strong></span> | |
<div style="margin-top: 8px;"> | |
<h4>{repo_name}</h4> | |
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small> | |
</div> | |
</div> | |
''' | |
custom_lora_data = { | |
"repo": link, | |
"weights": weights_file, | |
"trigger_word": trigger_word | |
} | |
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None | |
except Exception as e: | |
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None | |
def remove_custom_lora(): | |
"""Remove custom LoRA""" | |
return "", gr.update(visible=False), gr.update(visible=False), None, None | |
def classify_gallery(flux_loras): | |
"""Sort gallery by likes""" | |
try: | |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True) | |
gallery_items = [] | |
for item in sorted_gallery: | |
if "image" in item and "title" in item: | |
image_url = item["image"] | |
title = item["title"] | |
# If image is a local file path that might not exist, use a placeholder URL | |
if isinstance(image_url, str) and (image_url.startswith("/home/") or image_url.startswith("samples/") or not image_url.startswith("http")): | |
print(f"Replacing local/invalid image path: {image_url}") | |
# Use a more reliable placeholder | |
image_url = f"https://via.placeholder.com/512x512/E0E7FF/818CF8?text={title.replace(' ', '+')}" | |
gallery_items.append((image_url, title)) | |
if not gallery_items: | |
print("No gallery items found after filtering") | |
return [], sorted_gallery | |
return gallery_items, sorted_gallery | |
except Exception as e: | |
print(f"Error in classify_gallery: {e}") | |
return [], [] | |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
"""Wrapper function to handle state serialization""" | |
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress) | |
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
"""Generate image with selected LoRA""" | |
global current_lora, pipe | |
# Check if input image is provided | |
if input_image is None: | |
gr.Warning("Please upload an image first!") | |
return None, seed, gr.update(visible=False) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Determine which LoRA to use | |
lora_to_use = None | |
if custom_lora: | |
lora_to_use = custom_lora | |
elif selected_index is not None and flux_loras and selected_index < len(flux_loras): | |
lora_to_use = flux_loras[selected_index] | |
# Load LoRA if needed | |
if lora_to_use and lora_to_use != current_lora: | |
try: | |
# Unload current LoRA | |
if current_lora: | |
pipe.unload_lora_weights() | |
print(f"Unloaded previous LoRA") | |
# Load new LoRA | |
repo_id = lora_to_use.get("repo", "unknown") | |
weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors") | |
print(f"Loading LoRA: {repo_id} with weights: {weights_file}") | |
lora_path = load_lora_weights(repo_id, weights_file) | |
if lora_path: | |
pipe.load_lora_weights(lora_path, adapter_name="selected_lora") | |
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) | |
print(f"Successfully loaded: {lora_path} with scale {lora_scale}") | |
current_lora = lora_to_use | |
else: | |
print(f"Failed to load LoRA from {repo_id}") | |
gr.Warning(f"Failed to load LoRA style. Please try a different one.") | |
return None, seed, gr.update(visible=False) | |
except Exception as e: | |
print(f"Error loading LoRA: {e}") | |
# Continue without LoRA | |
else: | |
if lora_to_use: | |
print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}") | |
try: | |
# Convert image to RGB | |
input_image = input_image.convert("RGB") | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
gr.Warning("Error processing the uploaded image. Please try a different image.") | |
return None, seed, gr.update(visible=False) | |
# Check if LoRA is selected | |
if lora_to_use is None: | |
gr.Warning("Please select a LoRA style from the gallery first!") | |
return None, seed, gr.update(visible=False) | |
# Add trigger word to prompt | |
trigger_word = lora_to_use.get("trigger_word", "") | |
if trigger_word == ", How2Draw": | |
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features" | |
elif trigger_word == ", video game screenshot in the style of THSMS": | |
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features" | |
else: | |
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}." | |
try: | |
image = pipe( | |
image=input_image, | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
return image, seed, gr.update(visible=True) | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
return None, seed, gr.update(visible=False) | |
# CSS styling with beautiful gradient pastel design | |
css = """ | |
/* Global background and container styling */ | |
.gradio-container { | |
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%); | |
font-family: 'Inter', sans-serif; | |
} | |
/* Main app container */ | |
#main_app { | |
display: flex; | |
gap: 24px; | |
padding: 20px; | |
background: rgba(255, 255, 255, 0.85); | |
backdrop-filter: blur(20px); | |
border-radius: 24px; | |
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08); | |
} | |
/* Box column styling */ | |
#box_column { | |
min-width: 400px; | |
} | |
/* Gallery box with glassmorphism */ | |
#gallery_box { | |
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%); | |
border-radius: 20px; | |
padding: 20px; | |
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2); | |
border: 1px solid rgba(255, 255, 255, 0.8); | |
} | |
/* Input image styling */ | |
.image-container { | |
border-radius: 16px; | |
overflow: hidden; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); | |
} | |
/* Gallery styling */ | |
#gallery { | |
overflow-y: scroll !important; | |
max-height: 400px; | |
padding: 12px; | |
background: rgba(255, 255, 255, 0.5); | |
border-radius: 16px; | |
scrollbar-width: thin; | |
scrollbar-color: #ddd6fe #f5f3ff; | |
} | |
#gallery::-webkit-scrollbar { | |
width: 8px; | |
} | |
#gallery::-webkit-scrollbar-track { | |
background: #f5f3ff; | |
border-radius: 10px; | |
} | |
#gallery::-webkit-scrollbar-thumb { | |
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%); | |
border-radius: 10px; | |
} | |
/* Selected LoRA text */ | |
#selected_lora { | |
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
font-weight: 700; | |
font-size: 18px; | |
text-align: center; | |
padding: 12px; | |
margin-bottom: 16px; | |
} | |
/* Prompt input field */ | |
#prompt { | |
flex-grow: 1; | |
border: 2px solid transparent; | |
background: linear-gradient(white, white) padding-box, | |
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box; | |
border-radius: 12px; | |
padding: 12px 16px; | |
font-size: 16px; | |
transition: all 0.3s ease; | |
} | |
#prompt:focus { | |
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25); | |
} | |
/* Run button with animated gradient */ | |
#run_button { | |
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%); | |
background-size: 200% 200%; | |
animation: gradient-shift 3s ease infinite; | |
color: white; | |
border: none; | |
padding: 12px 32px; | |
border-radius: 12px; | |
font-weight: 600; | |
font-size: 16px; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4); | |
} | |
#run_button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6); | |
} | |
@keyframes gradient-shift { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
/* Custom LoRA card */ | |
.custom_lora_card { | |
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
border: 1px solid #fcd34d; | |
border-radius: 12px; | |
padding: 16px; | |
margin: 12px 0; | |
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2); | |
} | |
/* Result image container */ | |
.output-image { | |
border-radius: 16px; | |
overflow: hidden; | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12); | |
margin-top: 20px; | |
} | |
/* Accordion styling */ | |
.accordion { | |
background: rgba(249, 250, 251, 0.9); | |
border-radius: 12px; | |
border: 1px solid rgba(229, 231, 235, 0.8); | |
margin-top: 16px; | |
} | |
/* Slider styling */ | |
.slider-container { | |
padding: 8px 0; | |
} | |
input[type="range"] { | |
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%); | |
border-radius: 8px; | |
height: 6px; | |
} | |
/* Reuse button */ | |
button:not(#run_button) { | |
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%); | |
color: white; | |
border: none; | |
padding: 8px 20px; | |
border-radius: 8px; | |
font-weight: 500; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
} | |
button:not(#run_button):hover { | |
transform: translateY(-1px); | |
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4); | |
} | |
/* Title styling */ | |
h1 { | |
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
text-align: center; | |
font-size: 3.5rem; | |
font-weight: 800; | |
margin-bottom: 8px; | |
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); | |
} | |
h1 small { | |
display: block; | |
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
font-size: 1rem; | |
font-weight: 500; | |
margin-top: 8px; | |
} | |
/* Checkbox styling */ | |
input[type="checkbox"] { | |
accent-color: #8b5cf6; | |
} | |
/* Label styling */ | |
label { | |
color: #4b5563; | |
font-weight: 500; | |
} | |
/* Group containers */ | |
.gr-group { | |
background: rgba(255, 255, 255, 0.7); | |
border-radius: 16px; | |
padding: 20px; | |
border: 1px solid rgba(255, 255, 255, 0.9); | |
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05); | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr_flux_loras = gr.State(value=flux_loras_raw) | |
title = gr.HTML( | |
"""<h1>β¨ Flux-Kontext FaceLORA | |
<small>Transform your portraits with AI-powered style transfer π¨</small></h1>""", | |
) | |
selected_state = gr.State(value=None) | |
custom_loaded_lora = gr.State(value=None) | |
with gr.Row(elem_id="main_app"): | |
with gr.Column(scale=4, elem_id="box_column"): | |
with gr.Group(elem_id="gallery_box"): | |
input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300) | |
gallery = gr.Gallery( | |
label="Pick a LoRA", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
show_share_button=False, | |
height=400 | |
) | |
custom_model = gr.Textbox( | |
label="Or enter a custom HuggingFace FLUX LoRA", | |
placeholder="e.g., username/lora-name", | |
visible=True | |
) | |
custom_model_card = gr.HTML(visible=False) | |
custom_model_button = gr.Button("Remove custom LoRA", visible=False) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Editing Prompt", | |
show_label=False, | |
lines=1, | |
max_lines=1, | |
placeholder="optional description, e.g. 'a man with glasses and a beard'", | |
elem_id="prompt" | |
) | |
run_button = gr.Button("Generate β¨", elem_id="run_button") | |
result = gr.Image(label="Generated Image", interactive=False) | |
reuse_button = gr.Button("π Reuse this image", visible=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=1.5, | |
info="Controls the strength of the LoRA effect" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=2.5, | |
) | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", | |
visible=True, | |
elem_id="selected_lora", | |
) | |
# Event handlers | |
custom_model.input( | |
fn=load_custom_lora, | |
inputs=[custom_model], | |
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state], | |
) | |
custom_model_button.click( | |
fn=remove_custom_lora, | |
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state] | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_flux_loras], | |
outputs=[prompt_title, prompt, selected_state], | |
show_progress=False | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer_with_lora_wrapper, | |
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras], | |
outputs=[result, seed, reuse_button] | |
) | |
reuse_button.click( | |
fn=lambda image: image, | |
inputs=[result], | |
outputs=[input_image] | |
) | |
# Initialize gallery | |
demo.load( | |
fn=classify_gallery, | |
inputs=[gr_flux_loras], | |
outputs=[gallery, gr_flux_loras] | |
) | |
demo.queue(default_concurrency_limit=None) | |
demo.launch() |