ginipick's picture
Update app.py
3da2256 verified
raw
history blame
24.4 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
from safetensors.torch import load_file
import requests
import re
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
try:
with open("flux_loras.json", "r") as file:
data = json.load(file)
flux_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item.get("trigger_word", ""),
"trigger_position": item.get("trigger_position", "prepend"),
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
"likes": item.get("likes", 0),
}
for item in data
]
print(f"Successfully loaded {len(flux_loras_raw)} LoRAs from JSON")
except Exception as e:
print(f"Error loading flux_loras.json: {e}")
print("Using sample LoRA data instead...")
# Sample LoRA data with working repositories
flux_loras_raw = [
{
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/photo-1586902197503-e71026292412.jpeg",
"title": "Flux Koda",
"repo": "alvdansen/flux-koda",
"trigger_word": "flmft style",
"weights": "flux_lora.safetensors",
"likes": 100
},
{
"image": "https://huggingface.co/multimodalart/flux-tarot-v1/resolve/main/images/e5f2761e5a474e52ab11b1c9246c9a30.png",
"title": "Tarot Cards",
"repo": "multimodalart/flux-tarot-v1",
"trigger_word": "in the style of TOK a trtcrd tarot style",
"weights": "flux_tarot_v1_lora.safetensors",
"likes": 90
},
{
"image": "https://huggingface.co/Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style/resolve/main/d13591878de740648a8f29b836e16ff2.jpeg",
"title": "Paper Cutout",
"repo": "Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style",
"trigger_word": "Paper Cutout Style",
"weights": "Flux_1_Dev_LoRA_Paper-Cutout-Style.safetensors",
"likes": 80
},
{
"image": "https://huggingface.co/alvdansen/frosting_lane_flux/resolve/main/images/content%20-%202024-08-11T010011.238.jpeg",
"title": "Frosting Lane",
"repo": "alvdansen/frosting_lane_flux",
"trigger_word": "frstingln illustration",
"weights": "flux_lora_frosting_lane_flux_000002500.safetensors",
"likes": 70
},
{
"image": "https://huggingface.co/davisbro/flux-watercolor/resolve/main/images/wc2.png",
"title": "Watercolor",
"repo": "davisbro/flux-watercolor",
"trigger_word": "watercolor style",
"weights": "flux_watercolor.safetensors",
"likes": 60
}
]
# Global variables for LoRA management
current_lora = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load LoRA weights from HuggingFace"""
try:
# First try with the specified filename
try:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
if repo_id not in lora_cache:
lora_cache[repo_id] = lora_path
return lora_path
except Exception as e:
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
# If the specified file doesn't exist, try to find any .safetensors file
from huggingface_hub import list_repo_files
try:
files = list_repo_files(repo_id)
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
if not safetensors_files:
# Try without 'lora' in filename
safetensors_files = [f for f in files if f.endswith('.safetensors')]
if safetensors_files:
# Try the first available file
for file in safetensors_files:
try:
print(f"Trying alternative file: {file}")
lora_path = hf_hub_download(repo_id=repo_id, filename=file)
if repo_id not in lora_cache:
lora_cache[repo_id] = lora_path
print(f"Successfully loaded alternative LoRA file: {file}")
return lora_path
except:
continue
print(f"No suitable LoRA files found in {repo_id}")
return None
except Exception as list_error:
print(f"Error listing files in repo {repo_id}: {list_error}")
return None
except Exception as e:
print(f"Error loading LoRA from {repo_id}: {e}")
return None
def update_selection(selected_state: gr.SelectData, flux_loras):
"""Update UI when a LoRA is selected"""
if selected_state.index >= len(flux_loras):
return "### No LoRA selected", gr.update(), None
lora_repo = flux_loras[selected_state.index]["repo"]
trigger_word = flux_loras[selected_state.index]["trigger_word"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def get_huggingface_lora(link):
"""Download LoRA from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
# Try to find the correct safetensors file
files = list_repo_files(link)
safetensors_files = [f for f in files if f.endswith('.safetensors')]
# Prioritize files with 'lora' in the name
lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
if lora_files:
safetensors_file = lora_files[0]
elif safetensors_files:
safetensors_file = safetensors_files[0]
else:
# Try .bin files as fallback
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
if bin_files:
safetensors_file = bin_files[0]
else:
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback
print(f"Found LoRA file: {safetensors_file} in {link}")
return split_link[1], safetensors_file, trigger_word
except Exception as e:
print(f"Error in get_huggingface_lora: {e}")
# Try basic detection
try:
files = list_repo_files(link)
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
return split_link[1], safetensors_file, ""
except:
raise Exception(f"Error loading LoRA: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_custom_lora(link):
"""Load custom LoRA from user input"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None
try:
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
card = f'''
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
<span><strong>Loaded custom LoRA:</strong></span>
<div style="margin-top: 8px;">
<h4>{repo_name}</h4>
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
custom_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None
def remove_custom_lora():
"""Remove custom LoRA"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def classify_gallery(flux_loras):
"""Sort gallery by likes"""
try:
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
gallery_items = []
for item in sorted_gallery:
if "image" in item and "title" in item:
image_url = item["image"]
title = item["title"]
# If image is a local file path that might not exist, use a placeholder URL
if isinstance(image_url, str) and (image_url.startswith("/home/") or image_url.startswith("samples/") or not image_url.startswith("http")):
print(f"Replacing local/invalid image path: {image_url}")
# Use a more reliable placeholder
image_url = f"https://via.placeholder.com/512x512/E0E7FF/818CF8?text={title.replace(' ', '+')}"
gallery_items.append((image_url, title))
if not gallery_items:
print("No gallery items found after filtering")
return [], sorted_gallery
return gallery_items, sorted_gallery
except Exception as e:
print(f"Error in classify_gallery: {e}")
return [], []
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper function to handle state serialization"""
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Generate image with selected LoRA"""
global current_lora, pipe
# Check if input image is provided
if input_image is None:
gr.Warning("Please upload an image first!")
return None, seed, gr.update(visible=False)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Determine which LoRA to use
lora_to_use = None
if custom_lora:
lora_to_use = custom_lora
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
lora_to_use = flux_loras[selected_index]
# Load LoRA if needed
if lora_to_use and lora_to_use != current_lora:
try:
# Unload current LoRA
if current_lora:
pipe.unload_lora_weights()
print(f"Unloaded previous LoRA")
# Load new LoRA
repo_id = lora_to_use.get("repo", "unknown")
weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
lora_path = load_lora_weights(repo_id, weights_file)
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
current_lora = lora_to_use
else:
print(f"Failed to load LoRA from {repo_id}")
gr.Warning(f"Failed to load LoRA style. Please try a different one.")
return None, seed, gr.update(visible=False)
except Exception as e:
print(f"Error loading LoRA: {e}")
# Continue without LoRA
else:
if lora_to_use:
print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
try:
# Convert image to RGB
input_image = input_image.convert("RGB")
except Exception as e:
print(f"Error processing image: {e}")
gr.Warning("Error processing the uploaded image. Please try a different image.")
return None, seed, gr.update(visible=False)
# Check if LoRA is selected
if lora_to_use is None:
gr.Warning("Please select a LoRA style from the gallery first!")
return None, seed, gr.update(visible=False)
# Add trigger word to prompt
trigger_word = lora_to_use.get("trigger_word", "")
if trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == ", video game screenshot in the style of THSMS":
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
else:
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during inference: {e}")
return None, seed, gr.update(visible=False)
# CSS styling with beautiful gradient pastel design
css = """
/* Global background and container styling */
.gradio-container {
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
font-family: 'Inter', sans-serif;
}
/* Main app container */
#main_app {
display: flex;
gap: 24px;
padding: 20px;
background: rgba(255, 255, 255, 0.85);
backdrop-filter: blur(20px);
border-radius: 24px;
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
}
/* Box column styling */
#box_column {
min-width: 400px;
}
/* Gallery box with glassmorphism */
#gallery_box {
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
border-radius: 20px;
padding: 20px;
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
border: 1px solid rgba(255, 255, 255, 0.8);
}
/* Input image styling */
.image-container {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
}
/* Gallery styling */
#gallery {
overflow-y: scroll !important;
max-height: 400px;
padding: 12px;
background: rgba(255, 255, 255, 0.5);
border-radius: 16px;
scrollbar-width: thin;
scrollbar-color: #ddd6fe #f5f3ff;
}
#gallery::-webkit-scrollbar {
width: 8px;
}
#gallery::-webkit-scrollbar-track {
background: #f5f3ff;
border-radius: 10px;
}
#gallery::-webkit-scrollbar-thumb {
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
border-radius: 10px;
}
/* Selected LoRA text */
#selected_lora {
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 18px;
text-align: center;
padding: 12px;
margin-bottom: 16px;
}
/* Prompt input field */
#prompt {
flex-grow: 1;
border: 2px solid transparent;
background: linear-gradient(white, white) padding-box,
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
border-radius: 12px;
padding: 12px 16px;
font-size: 16px;
transition: all 0.3s ease;
}
#prompt:focus {
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
}
/* Run button with animated gradient */
#run_button {
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
background-size: 200% 200%;
animation: gradient-shift 3s ease infinite;
color: white;
border: none;
padding: 12px 32px;
border-radius: 12px;
font-weight: 600;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
}
#run_button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
}
@keyframes gradient-shift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* Custom LoRA card */
.custom_lora_card {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border: 1px solid #fcd34d;
border-radius: 12px;
padding: 16px;
margin: 12px 0;
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
}
/* Result image container */
.output-image {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
margin-top: 20px;
}
/* Accordion styling */
.accordion {
background: rgba(249, 250, 251, 0.9);
border-radius: 12px;
border: 1px solid rgba(229, 231, 235, 0.8);
margin-top: 16px;
}
/* Slider styling */
.slider-container {
padding: 8px 0;
}
input[type="range"] {
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
border-radius: 8px;
height: 6px;
}
/* Reuse button */
button:not(#run_button) {
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
color: white;
border: none;
padding: 8px 20px;
border-radius: 8px;
font-weight: 500;
cursor: pointer;
transition: all 0.3s ease;
}
button:not(#run_button):hover {
transform: translateY(-1px);
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
}
/* Title styling */
h1 {
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
font-size: 3.5rem;
font-weight: 800;
margin-bottom: 8px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}
h1 small {
display: block;
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 1rem;
font-weight: 500;
margin-top: 8px;
}
/* Checkbox styling */
input[type="checkbox"] {
accent-color: #8b5cf6;
}
/* Label styling */
label {
color: #4b5563;
font-weight: 500;
}
/* Group containers */
.gr-group {
background: rgba(255, 255, 255, 0.7);
border-radius: 16px;
padding: 20px;
border: 1px solid rgba(255, 255, 255, 0.9);
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr_flux_loras = gr.State(value=flux_loras_raw)
title = gr.HTML(
"""<h1>✨ Flux-Kontext FaceLORA
<small>Transform your portraits with AI-powered style transfer 🎨</small></h1>""",
)
selected_state = gr.State(value=None)
custom_loaded_lora = gr.State(value=None)
with gr.Row(elem_id="main_app"):
with gr.Column(scale=4, elem_id="box_column"):
with gr.Group(elem_id="gallery_box"):
input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
gallery = gr.Gallery(
label="Pick a LoRA",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
height=400
)
custom_model = gr.Textbox(
label="Or enter a custom HuggingFace FLUX LoRA",
placeholder="e.g., username/lora-name",
visible=True
)
custom_model_card = gr.HTML(visible=False)
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Editing Prompt",
show_label=False,
lines=1,
max_lines=1,
placeholder="optional description, e.g. 'a man with glasses and a beard'",
elem_id="prompt"
)
run_button = gr.Button("Generate ✨", elem_id="run_button")
result = gr.Image(label="Generated Image", interactive=False)
reuse_button = gr.Button("πŸ”„ Reuse this image", visible=False)
with gr.Accordion("Advanced Settings", open=False):
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=2,
step=0.1,
value=1.5,
info="Controls the strength of the LoRA effect"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
# Event handlers
custom_model.input(
fn=load_custom_lora,
inputs=[custom_model],
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
)
custom_model_button.click(
fn=remove_custom_lora,
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
)
gallery.select(
fn=update_selection,
inputs=[gr_flux_loras],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_with_lora_wrapper,
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize gallery
demo.load(
fn=classify_gallery,
inputs=[gr_flux_loras],
outputs=[gallery, gr_flux_loras]
)
demo.queue(default_concurrency_limit=None)
demo.launch()