File size: 19,113 Bytes
0c2c127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fc96
 
 
 
 
 
 
 
 
 
0c2c127
 
 
 
 
 
 
 
 
 
1e8ff8a
 
 
 
 
0c2c127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fc96
0c2c127
 
f48fc96
 
 
 
 
0c2c127
 
 
f48fc96
0c2c127
f48fc96
 
 
 
0c2c127
 
 
 
 
f48fc96
 
0c2c127
f48fc96
 
 
 
 
 
 
1e8ff8a
 
 
 
 
 
0c2c127
1e8ff8a
0c2c127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re

# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
try:
    with open("flux_loras.json", "r") as file:
        data = json.load(file)
        flux_loras_raw = [
            {
                "image": item["image"],
                "title": item["title"],
                "repo": item["repo"],
                "trigger_word": item.get("trigger_word", ""),
                "trigger_position": item.get("trigger_position", "prepend"),
                "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
                "likes": item.get("likes", 0),
            }
            for item in data
        ]
    print(f"Successfully loaded {len(flux_loras_raw)} LoRAs from JSON")
except Exception as e:
    print(f"Error loading flux_loras.json: {e}")
    flux_loras_raw = []
# Global variables for LoRA management
current_lora = None
lora_cache = {}

def load_lora_weights(repo_id, weights_filename):
    """Load LoRA weights from HuggingFace"""
    try:
        if repo_id not in lora_cache:
            lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
            lora_cache[repo_id] = lora_path
        return lora_cache[repo_id]
    except Exception as e:
        print(f"Error loading LoRA from {repo_id}: {e}")
        return None

def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None
    
    lora_repo = flux_loras[selected_state.index]["repo"]
    trigger_word = flux_loras[selected_state.index]["trigger_word"]
    
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
    
    return updated_text, gr.update(placeholder=new_placeholder), selected_state.index

def get_huggingface_lora(link):
    """Download LoRA from HuggingFace link"""
    split_link = link.split("/")
    if len(split_link) == 2:
        try:
            model_card = ModelCard.load(link)
            trigger_word = model_card.data.get("instance_prompt", "")
            
            fs = HfFileSystem()
            list_of_files = fs.ls(link, detail=False)
            safetensors_file = None
            
            for file in list_of_files:
                if file.endswith(".safetensors") and "lora" in file.lower():
                    safetensors_file = file.split("/")[-1]
                    break
            
            if not safetensors_file:
                safetensors_file = "pytorch_lora_weights.safetensors"
            
            return split_link[1], safetensors_file, trigger_word
        except Exception as e:
            raise Exception(f"Error loading LoRA: {e}")
    else:
        raise Exception("Invalid HuggingFace repository format")

def load_custom_lora(link):
    """Load custom LoRA from user input"""
    if not link:
        return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None
    
    try:
        repo_name, weights_file, trigger_word = get_huggingface_lora(link)
        
        card = f'''
        <div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
            <span><strong>Loaded custom LoRA:</strong></span>
            <div style="margin-top: 8px;">
                <h4>{repo_name}</h4>
                <small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
            </div>
        </div>
        '''
        
        custom_lora_data = {
            "repo": link,
            "weights": weights_file,
            "trigger_word": trigger_word
        }
        
        return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
    
    except Exception as e:
        return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None

def remove_custom_lora():
    """Remove custom LoRA"""
    return "", gr.update(visible=False), gr.update(visible=False), None, None

def classify_gallery(flux_loras):
    """Sort gallery by likes"""
    try:
        sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
        gallery_items = []
        for item in sorted_gallery:
            if "image" in item and "title" in item:
                gallery_items.append((item["image"], item["title"]))
        return gallery_items, sorted_gallery
    except Exception as e:
        print(f"Error loading gallery: {e}")
        return [], []

def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper function to handle state serialization"""
    return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)

@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Generate image with selected LoRA"""
    global current_lora, pipe
    
    # Check if input image is provided
    if input_image is None:
        gr.Warning("Please upload an image first!")
        return None, seed, gr.update(visible=False)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Determine which LoRA to use
    lora_to_use = None
    if custom_lora:
        lora_to_use = custom_lora
    elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    # Load LoRA if needed
    if lora_to_use and lora_to_use != current_lora:
        try:
            # Unload current LoRA
            if current_lora:
                pipe.unload_lora_weights()
                print(f"Unloaded previous LoRA")
            
            # Load new LoRA
            repo_id = lora_to_use.get("repo", "unknown")
            weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
            print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
            
            lora_path = load_lora_weights(repo_id, weights_file)
            if lora_path:
                pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
                pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
                print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
                current_lora = lora_to_use
            else:
                print(f"Failed to load LoRA from {repo_id}")
                gr.Warning(f"Failed to load LoRA style. Please try a different one.")
                return None, seed, gr.update(visible=False)
            
        except Exception as e:
            print(f"Error loading LoRA: {e}")
            # Continue without LoRA
    else:
        if lora_to_use:
            print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
    
    try:
        # Convert image to RGB
        input_image = input_image.convert("RGB")
    except Exception as e:
        print(f"Error processing image: {e}")
        gr.Warning("Error processing the uploaded image. Please try a different image.")
        return None, seed, gr.update(visible=False)
    
    # Check if LoRA is selected
    if lora_to_use is None:
        gr.Warning("Please select a LoRA style from the gallery first!")
        return None, seed, gr.update(visible=False)
    
    # Add trigger word to prompt
    trigger_word = lora_to_use.get("trigger_word", "")
    if trigger_word == ", How2Draw":
        prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
    elif trigger_word == ", video game screenshot in the style of THSMS":
        prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
    else:
        prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
    
    try:
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
        
        return image, seed, gr.update(visible=True)
    
    except Exception as e:
        print(f"Error during inference: {e}")
        return None, seed, gr.update(visible=False)

# CSS styling with beautiful gradient pastel design
css = """
/* Global background and container styling */
.gradio-container {
    background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
    font-family: 'Inter', sans-serif;
}

/* Main app container */
#main_app {
    display: flex;
    gap: 24px;
    padding: 20px;
    background: rgba(255, 255, 255, 0.85);
    backdrop-filter: blur(20px);
    border-radius: 24px;
    box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
}

/* Box column styling */
#box_column {
    min-width: 400px;
}

/* Gallery box with glassmorphism */
#gallery_box {
    background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
    border-radius: 20px;
    padding: 20px;
    box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
    border: 1px solid rgba(255, 255, 255, 0.8);
}

/* Input image styling */
.image-container {
    border-radius: 16px;
    overflow: hidden;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
}

/* Gallery styling */
#gallery {
    overflow-y: scroll !important;
    max-height: 400px;
    padding: 12px;
    background: rgba(255, 255, 255, 0.5);
    border-radius: 16px;
    scrollbar-width: thin;
    scrollbar-color: #ddd6fe #f5f3ff;
}

#gallery::-webkit-scrollbar {
    width: 8px;
}

#gallery::-webkit-scrollbar-track {
    background: #f5f3ff;
    border-radius: 10px;
}

#gallery::-webkit-scrollbar-thumb {
    background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
    border-radius: 10px;
}

/* Selected LoRA text */
#selected_lora {
    background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    font-weight: 700;
    font-size: 18px;
    text-align: center;
    padding: 12px;
    margin-bottom: 16px;
}

/* Prompt input field */
#prompt {
    flex-grow: 1;
    border: 2px solid transparent;
    background: linear-gradient(white, white) padding-box,
                linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
    border-radius: 12px;
    padding: 12px 16px;
    font-size: 16px;
    transition: all 0.3s ease;
}

#prompt:focus {
    box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
}

/* Run button with animated gradient */
#run_button {
    background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
    background-size: 200% 200%;
    animation: gradient-shift 3s ease infinite;
    color: white;
    border: none;
    padding: 12px 32px;
    border-radius: 12px;
    font-weight: 600;
    font-size: 16px;
    cursor: pointer;
    transition: all 0.3s ease;
    box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
}

#run_button:hover {
    transform: translateY(-2px);
    box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
}

@keyframes gradient-shift {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

/* Custom LoRA card */
.custom_lora_card {
    background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
    border: 1px solid #fcd34d;
    border-radius: 12px;
    padding: 16px;
    margin: 12px 0;
    box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
}

/* Result image container */
.output-image {
    border-radius: 16px;
    overflow: hidden;
    box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
    margin-top: 20px;
}

/* Accordion styling */
.accordion {
    background: rgba(249, 250, 251, 0.9);
    border-radius: 12px;
    border: 1px solid rgba(229, 231, 235, 0.8);
    margin-top: 16px;
}

/* Slider styling */
.slider-container {
    padding: 8px 0;
}

input[type="range"] {
    background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
    border-radius: 8px;
    height: 6px;
}

/* Reuse button */
button:not(#run_button) {
    background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
    color: white;
    border: none;
    padding: 8px 20px;
    border-radius: 8px;
    font-weight: 500;
    cursor: pointer;
    transition: all 0.3s ease;
}

button:not(#run_button):hover {
    transform: translateY(-1px);
    box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
}

/* Title styling */
h1 {
    background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    text-align: center;
    font-size: 3.5rem;
    font-weight: 800;
    margin-bottom: 8px;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}

h1 small {
    display: block;
    background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    font-size: 1rem;
    font-weight: 500;
    margin-top: 8px;
}

/* Checkbox styling */
input[type="checkbox"] {
    accent-color: #8b5cf6;
}

/* Label styling */
label {
    color: #4b5563;
    font-weight: 500;
}

/* Group containers */
.gr-group {
    background: rgba(255, 255, 255, 0.7);
    border-radius: 16px;
    padding: 20px;
    border: 1px solid rgba(255, 255, 255, 0.9);
    box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
}
"""

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)
    
    title = gr.HTML(
        """<h1>✨ Flux-Kontext FaceLORA
        <small>Transform your portraits with AI-powered style transfer 🎨</small></h1>""",
    )
    
    selected_state = gr.State(value=None)
    custom_loaded_lora = gr.State(value=None)
    
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
                
                gallery = gr.Gallery(
                    label="Pick a LoRA",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                    height=400
                )
                
                custom_model = gr.Textbox(
                    label="Or enter a custom HuggingFace FLUX LoRA", 
                    placeholder="e.g., username/lora-name",
                    visible=False
                )
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("Remove custom LoRA", visible=False)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="optional description, e.g. 'a man with glasses and a beard'",
                    elem_id="prompt"
                )
                run_button = gr.Button("Generate ✨", elem_id="run_button")
            
            result = gr.Image(label="Generated Image", interactive=False)
            reuse_button = gr.Button("πŸ”„ Reuse this image", visible=False)
            
            with gr.Accordion("Advanced Settings", open=False):
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.5,
                    info="Controls the strength of the LoRA effect"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                )
            
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )

    # Event handlers
    custom_model.input(
        fn=load_custom_lora,
        inputs=[custom_model],
        outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
    )
    
    custom_model_button.click(
        fn=remove_custom_lora,
        outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
    )
    
    gallery.select(
        fn=update_selection,
        inputs=[gr_flux_loras],
        outputs=[prompt_title, prompt, selected_state],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
        outputs=[result, seed, reuse_button]
    )
    
    reuse_button.click(
        fn=lambda image: image,
        inputs=[result],
        outputs=[input_image]
    )
    
    # Initialize gallery
    demo.load(
        fn=classify_gallery, 
        inputs=[gr_flux_loras], 
        outputs=[gallery, gr_flux_loras]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()