Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,515 Bytes
0c2c127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
with open("flux_loras.json", "r") as file:
data = json.load(file)
flux_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item.get("trigger_word", ""),
"trigger_position": item.get("trigger_position", "prepend"),
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
}
for item in data
]
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
# Global variables for LoRA management
current_lora = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load LoRA weights from HuggingFace"""
try:
if repo_id not in lora_cache:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
lora_cache[repo_id] = lora_path
return lora_cache[repo_id]
except Exception as e:
print(f"Error loading LoRA from {repo_id}: {e}")
return None
def update_selection(selected_state: gr.SelectData, flux_loras):
"""Update UI when a LoRA is selected"""
if selected_state.index >= len(flux_loras):
return "### No LoRA selected", gr.update(), None
lora_repo = flux_loras[selected_state.index]["repo"]
trigger_word = flux_loras[selected_state.index]["trigger_word"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def get_huggingface_lora(link):
"""Download LoRA from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
fs = HfFileSystem()
list_of_files = fs.ls(link, detail=False)
safetensors_file = None
for file in list_of_files:
if file.endswith(".safetensors") and "lora" in file.lower():
safetensors_file = file.split("/")[-1]
break
if not safetensors_file:
safetensors_file = "pytorch_lora_weights.safetensors"
return split_link[1], safetensors_file, trigger_word
except Exception as e:
raise Exception(f"Error loading LoRA: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_custom_lora(link):
"""Load custom LoRA from user input"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None
try:
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
card = f'''
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
<span><strong>Loaded custom LoRA:</strong></span>
<div style="margin-top: 8px;">
<h4>{repo_name}</h4>
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
custom_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None
def remove_custom_lora():
"""Remove custom LoRA"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def classify_gallery(flux_loras):
"""Sort gallery by likes"""
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper function to handle state serialization"""
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Generate image with selected LoRA"""
global current_lora, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Determine which LoRA to use
lora_to_use = None
if custom_lora:
lora_to_use = custom_lora
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
lora_to_use = flux_loras[selected_index]
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
# Load LoRA if needed
if lora_to_use and lora_to_use != current_lora:
try:
# Unload current LoRA
if current_lora:
pipe.unload_lora_weights()
# Load new LoRA
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"loaded: {lora_path} with scale {lora_scale}")
current_lora = lora_to_use
except Exception as e:
print(f"Error loading LoRA: {e}")
# Continue without LoRA
else:
print(f"using already loaded lora: {lora_to_use}")
input_image = input_image.convert("RGB")
# Add trigger word to prompt
trigger_word = lora_to_use["trigger_word"]
if trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == ", video game screenshot in the style of THSMS":
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
else:
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during inference: {e}")
return None, seed, gr.update(visible=False)
# CSS styling with beautiful gradient pastel design
css = """
/* Global background and container styling */
.gradio-container {
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
font-family: 'Inter', sans-serif;
}
/* Main app container */
#main_app {
display: flex;
gap: 24px;
padding: 20px;
background: rgba(255, 255, 255, 0.85);
backdrop-filter: blur(20px);
border-radius: 24px;
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
}
/* Box column styling */
#box_column {
min-width: 400px;
}
/* Gallery box with glassmorphism */
#gallery_box {
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
border-radius: 20px;
padding: 20px;
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
border: 1px solid rgba(255, 255, 255, 0.8);
}
/* Input image styling */
.image-container {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
}
/* Gallery styling */
#gallery {
overflow-y: scroll !important;
max-height: 400px;
padding: 12px;
background: rgba(255, 255, 255, 0.5);
border-radius: 16px;
scrollbar-width: thin;
scrollbar-color: #ddd6fe #f5f3ff;
}
#gallery::-webkit-scrollbar {
width: 8px;
}
#gallery::-webkit-scrollbar-track {
background: #f5f3ff;
border-radius: 10px;
}
#gallery::-webkit-scrollbar-thumb {
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
border-radius: 10px;
}
/* Selected LoRA text */
#selected_lora {
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 18px;
text-align: center;
padding: 12px;
margin-bottom: 16px;
}
/* Prompt input field */
#prompt {
flex-grow: 1;
border: 2px solid transparent;
background: linear-gradient(white, white) padding-box,
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
border-radius: 12px;
padding: 12px 16px;
font-size: 16px;
transition: all 0.3s ease;
}
#prompt:focus {
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
}
/* Run button with animated gradient */
#run_button {
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
background-size: 200% 200%;
animation: gradient-shift 3s ease infinite;
color: white;
border: none;
padding: 12px 32px;
border-radius: 12px;
font-weight: 600;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
}
#run_button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
}
@keyframes gradient-shift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* Custom LoRA card */
.custom_lora_card {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border: 1px solid #fcd34d;
border-radius: 12px;
padding: 16px;
margin: 12px 0;
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
}
/* Result image container */
.output-image {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
margin-top: 20px;
}
/* Accordion styling */
.accordion {
background: rgba(249, 250, 251, 0.9);
border-radius: 12px;
border: 1px solid rgba(229, 231, 235, 0.8);
margin-top: 16px;
}
/* Slider styling */
.slider-container {
padding: 8px 0;
}
input[type="range"] {
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
border-radius: 8px;
height: 6px;
}
/* Reuse button */
button:not(#run_button) {
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
color: white;
border: none;
padding: 8px 20px;
border-radius: 8px;
font-weight: 500;
cursor: pointer;
transition: all 0.3s ease;
}
button:not(#run_button):hover {
transform: translateY(-1px);
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
}
/* Title styling */
h1 {
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
font-size: 3.5rem;
font-weight: 800;
margin-bottom: 8px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}
h1 small {
display: block;
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 1rem;
font-weight: 500;
margin-top: 8px;
}
/* Checkbox styling */
input[type="checkbox"] {
accent-color: #8b5cf6;
}
/* Label styling */
label {
color: #4b5563;
font-weight: 500;
}
/* Group containers */
.gr-group {
background: rgba(255, 255, 255, 0.7);
border-radius: 16px;
padding: 20px;
border: 1px solid rgba(255, 255, 255, 0.9);
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr_flux_loras = gr.State(value=flux_loras_raw)
title = gr.HTML(
"""<h1>β¨ Flux-Kontext FaceLORA
<small>Transform your portraits with AI-powered style transfer π¨</small></h1>""",
)
selected_state = gr.State(value=None)
custom_loaded_lora = gr.State(value=None)
with gr.Row(elem_id="main_app"):
with gr.Column(scale=4, elem_id="box_column"):
with gr.Group(elem_id="gallery_box"):
input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
gallery = gr.Gallery(
label="Pick a LoRA",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
height=400
)
custom_model = gr.Textbox(
label="Or enter a custom HuggingFace FLUX LoRA",
placeholder="e.g., username/lora-name",
visible=False
)
custom_model_card = gr.HTML(visible=False)
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Editing Prompt",
show_label=False,
lines=1,
max_lines=1,
placeholder="optional description, e.g. 'a man with glasses and a beard'",
elem_id="prompt"
)
run_button = gr.Button("Generate β¨", elem_id="run_button")
result = gr.Image(label="Generated Image", interactive=False)
reuse_button = gr.Button("π Reuse this image", visible=False)
with gr.Accordion("Advanced Settings", open=False):
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=2,
step=0.1,
value=1.5,
info="Controls the strength of the LoRA effect"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
# Event handlers
custom_model.input(
fn=load_custom_lora,
inputs=[custom_model],
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
)
custom_model_button.click(
fn=remove_custom_lora,
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
)
gallery.select(
fn=update_selection,
inputs=[gr_flux_loras],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_with_lora_wrapper,
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize gallery
demo.load(
fn=classify_gallery,
inputs=[gr_flux_loras],
outputs=[gallery, gr_flux_loras]
)
demo.queue(default_concurrency_limit=None)
demo.launch() |