File size: 8,649 Bytes
dd5d6cc 7f98410 dd5d6cc 7f98410 dd5d6cc f3cae17 dd5d6cc f3cae17 dd5d6cc 7f98410 dd5d6cc 7f98410 dd5d6cc fda85af dd5d6cc 7f98410 dd5d6cc 7f98410 dd5d6cc 0e14842 dd5d6cc 1a0c9b6 dd5d6cc 1a0c9b6 dd5d6cc 1a0c9b6 dd5d6cc 1a0c9b6 dd5d6cc b03c39e dd5d6cc 0e14842 dd5d6cc 9d997d8 dd5d6cc 9dace64 dd5d6cc 0e14842 dd5d6cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# app.py
import os
import base64
import streamlit as st
from gradio_client import Client
from dotenv import load_dotenv
from pathlib import Path
import json
import hashlib
import time
from typing import Dict, Any
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# Cache directory setup
CACHE_DIR = Path("./cache")
CACHE_DIR.mkdir(exist_ok=True)
# Cached example diagrams
CACHED_EXAMPLES = {
"literacy_mental": {
"title": "Literacy Mental Map",
"prompt": """A handrawn colorful mind map diagram, rugosity drawn lines, clear shapes, brain silhouette, text areas. must include the texts
LITERACY/MENTAL
βββ PEACE [Dove Icon]
βββ HEALTH [Vitruvian Man ~60px]
βββ CONNECT [Brain-Mind Connection Icon]
βββ INTELLIGENCE
β βββ EVERYTHING [Globe Icon ~50px]
βββ MEMORY
βββ READING [Book Icon ~40px]
βββ SPEED [Speedometer Icon]
βββ CREATIVITY
βββ INTELLIGENCE [Lightbulb + Infinity ~30px]""",
"width": 1024,
"height": 1024,
"seed": 1872187377,
"cache_path": "literacy_mental.png"
}
}
# Example diagrams for various use cases
DIAGRAM_EXAMPLES = [
{
"title": "Project Management Flow",
"prompt": """A handrawn colorful mind map diagram, rugosity drawn lines, clear shapes, project management flow.
PROJECT MANAGEMENT
βββ INITIATION [Rocket Icon]
βββ PLANNING [Calendar Icon]
βββ EXECUTION [Gear Icon]
βββ MONITORING
β βββ CONTROL [Dashboard Icon]
βββ CLOSURE [Checkmark Icon]""",
"width": 1024,
"height": 1024
},
{
"title": "Digital Marketing Strategy",
"prompt": """A handrawn colorful mind map diagram, rugosity drawn lines, modern style, marketing concept.
DIGITAL MARKETING
βββ SEO [Magnifying Glass]
βββ SOCIAL MEDIA [Network Icon]
βββ CONTENT
β βββ BLOG [Document Icon]
β βββ VIDEO [Play Button]
βββ ANALYTICS [Graph Icon]""",
"width": 1024,
"height": 1024
}
]
# Add 15 more examples
ADDITIONAL_EXAMPLES = [
{
"title": "Health & Wellness",
"prompt": """A handrawn colorful mind map diagram, wellness-focused style, health aspects.
WELLNESS
βββ PHYSICAL [Dumbbell Icon]
βββ MENTAL [Brain Icon]
βββ NUTRITION [Apple Icon]
βββ SLEEP
βββ QUALITY [Star Icon]
βββ DURATION [Clock Icon]""",
"width": 1024,
"height": 1024
}
# ... (λλ¨Έμ§ μμ λ€)
]
class DiagramCache:
def __init__(self, cache_dir: Path):
self.cache_dir = cache_dir
self.cache_dir.mkdir(exist_ok=True)
self._load_cache()
def _load_cache(self):
"""Load existing cache entries"""
self.cache_index = {}
if (self.cache_dir / "cache_index.json").exists():
with open(self.cache_dir / "cache_index.json", "r") as f:
self.cache_index = json.load(f)
def _save_cache_index(self):
"""Save cache index to disk"""
with open(self.cache_dir / "cache_index.json", "w") as f:
json.dump(self.cache_index, f)
def _get_cache_key(self, params: Dict[str, Any]) -> str:
"""Generate cache key from parameters"""
param_str = json.dumps(params, sort_keys=True)
return hashlib.md5(param_str.encode()).hexdigest()
def get(self, params: Dict[str, Any]) -> Path:
"""Get cached result if exists"""
cache_key = self._get_cache_key(params)
cache_info = self.cache_index.get(cache_key)
if cache_info:
cache_path = self.cache_dir / cache_info["filename"]
if cache_path.exists():
return cache_path
return None
def put(self, params: Dict[str, Any], result_path: Path):
"""Store result in cache"""
cache_key = self._get_cache_key(params)
filename = f"{cache_key}{result_path.suffix}"
cache_path = self.cache_dir / filename
# Copy result to cache
with open(result_path, "rb") as src, open(cache_path, "wb") as dst:
dst.write(src.read())
# Update index
self.cache_index[cache_key] = {
"filename": filename,
"timestamp": time.time(),
"params": params
}
self._save_cache_index()
# Initialize cache
diagram_cache = DiagramCache(CACHE_DIR)
@st.cache_data
def generate_cached_example(example_id: str) -> str:
"""Generate and cache example diagram"""
example = CACHED_EXAMPLES[example_id]
client = Client("black-forest-labs/FLUX.1-schnell")
# Check cache first
cache_path = diagram_cache.get(example)
if cache_path:
with open(cache_path, "rb") as f:
return base64.b64encode(f.read()).decode()
# Generate new image
result = client.predict(
prompt=example["prompt"],
seed=example["seed"],
randomize_seed=False,
width=example["width"],
height=example["height"],
num_inference_steps=4,
api_name="/infer"
)
# Cache the result
diagram_cache.put(example, Path(result))
with open(result, "rb") as f:
return base64.b64encode(f.read()).decode()
def generate_diagram(prompt: str, width: int, height: int, seed: int = None) -> str:
"""Generate a new diagram"""
client = Client("black-forest-labs/FLUX.1-schnell")
params = {
"prompt": prompt,
"seed": seed if seed else 1872187377,
"width": width,
"height": height
}
# Check cache first
cache_path = diagram_cache.get(params)
if cache_path:
with open(cache_path, "rb") as f:
return base64.b64encode(f.read()).decode()
# Generate new image
try:
result = client.predict(
prompt=prompt,
seed=params["seed"],
randomize_seed=False,
width=width,
height=height,
num_inference_steps=4,
api_name="/infer"
)
# Cache the result
diagram_cache.put(params, Path(result))
with open(result, "rb") as f:
return base64.b64encode(f.read()).decode()
except Exception as e:
st.error(f"Error generating diagram: {str(e)}")
return None
def main():
st.set_page_config(page_title="FLUX Diagram Generator", layout="wide")
st.title("π¨ FLUX Diagram Generator")
st.markdown("Generate beautiful hand-drawn style diagrams using FLUX AI")
# Sidebar for examples
st.sidebar.title("π Example Templates")
selected_example = st.sidebar.selectbox(
"Choose a template",
options=range(len(DIAGRAM_EXAMPLES)),
format_func=lambda x: DIAGRAM_EXAMPLES[x]["title"]
)
# Main content area
col1, col2 = st.columns([2, 1])
with col1:
# Input area
prompt = st.text_area(
"Diagram Prompt",
value=DIAGRAM_EXAMPLES[selected_example]["prompt"],
height=200
)
# Configuration
with st.expander("Advanced Configuration"):
width = st.number_input("Width", min_value=512, max_value=2048, value=1024, step=128)
height = st.number_input("Height", min_value=512, max_value=2048, value=1024, step=128)
seed = st.number_input("Seed (optional)", value=None, step=1)
if st.button("π¨ Generate Diagram"):
with st.spinner("Generating your diagram..."):
result = generate_diagram(prompt, width, height, seed)
if result:
st.image(result, caption="Generated Diagram", use_column_width=True)
with col2:
st.subheader("Tips for Better Results")
st.markdown("""
- Use clear hierarchical structures
- Include icon descriptions in brackets
- Keep text concise and meaningful
- Use consistent formatting
""")
st.subheader("Template Structure")
st.code("""
MAIN TOPIC
βββ SUBTOPIC 1 [Icon]
βββ SUBTOPIC 2 [Icon]
βββ SUBTOPIC 3
βββ DETAIL 1 [Icon]
βββ DETAIL 2 [Icon]
""")
if __name__ == "__main__":
main()
|