ginipick commited on
Commit
81210e7
·
verified ·
1 Parent(s): 4e85f51

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -954
app.py DELETED
@@ -1,954 +0,0 @@
1
- # import os
2
- import spaces
3
-
4
- import time
5
- import gradio as gr
6
- import torch
7
- from PIL import Image
8
- from torchvision import transforms
9
- from dataclasses import dataclass
10
- import math
11
- from typing import Callable
12
-
13
- from tqdm import tqdm
14
- import bitsandbytes as bnb
15
- from bitsandbytes.nn.modules import Params4bit, QuantState
16
-
17
- import torch
18
- import random
19
- from einops import rearrange, repeat
20
- from diffusers import AutoencoderKL
21
- from torch import Tensor, nn
22
- from transformers import CLIPTextModel, CLIPTokenizer
23
- from transformers import T5EncoderModel, T5Tokenizer
24
- # from optimum.quanto import freeze, qfloat8, quantize
25
- from transformers import pipeline
26
-
27
- ko_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
28
- ja_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ja-en")
29
-
30
- class HFEmbedder(nn.Module):
31
- def __init__(self, version: str, max_length: int, **hf_kwargs):
32
- super().__init__()
33
- self.is_clip = version.startswith("openai")
34
- self.max_length = max_length
35
- self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
36
-
37
- if self.is_clip:
38
- self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
39
- self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
40
- else:
41
- self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
42
- self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
43
-
44
- self.hf_module = self.hf_module.eval().requires_grad_(False)
45
-
46
- def forward(self, text: list[str]) -> Tensor:
47
- batch_encoding = self.tokenizer(
48
- text,
49
- truncation=True,
50
- max_length=self.max_length,
51
- return_length=False,
52
- return_overflowing_tokens=False,
53
- padding="max_length",
54
- return_tensors="pt",
55
- )
56
-
57
- outputs = self.hf_module(
58
- input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
59
- attention_mask=None,
60
- output_hidden_states=False,
61
- )
62
- return outputs[self.output_key]
63
-
64
-
65
- device = "cuda"
66
- t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
67
- clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
68
- ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
69
- # quantize(t5, weights=qfloat8)
70
- # freeze(t5)
71
-
72
-
73
- # ---------------- NF4 ----------------
74
-
75
-
76
- def functional_linear_4bits(x, weight, bias):
77
- out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
78
- out = out.to(x)
79
- return out
80
-
81
-
82
- def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
83
- if state is None:
84
- return None
85
-
86
- device = device or state.absmax.device
87
-
88
- state2 = (
89
- QuantState(
90
- absmax=state.state2.absmax.to(device),
91
- shape=state.state2.shape,
92
- code=state.state2.code.to(device),
93
- blocksize=state.state2.blocksize,
94
- quant_type=state.state2.quant_type,
95
- dtype=state.state2.dtype,
96
- )
97
- if state.nested
98
- else None
99
- )
100
-
101
- return QuantState(
102
- absmax=state.absmax.to(device),
103
- shape=state.shape,
104
- code=state.code.to(device),
105
- blocksize=state.blocksize,
106
- quant_type=state.quant_type,
107
- dtype=state.dtype,
108
- offset=state.offset.to(device) if state.nested else None,
109
- state2=state2,
110
- )
111
-
112
-
113
- class ForgeParams4bit(Params4bit):
114
- def to(self, *args, **kwargs):
115
- device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
116
- if device is not None and device.type == "cuda" and not self.bnb_quantized:
117
- return self._quantize(device)
118
- else:
119
- n = ForgeParams4bit(
120
- torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
121
- requires_grad=self.requires_grad,
122
- quant_state=copy_quant_state(self.quant_state, device),
123
- # blocksize=self.blocksize,
124
- # compress_statistics=self.compress_statistics,
125
- compress_statistics=False,
126
- blocksize=64,
127
- quant_type=self.quant_type,
128
- quant_storage=self.quant_storage,
129
- bnb_quantized=self.bnb_quantized,
130
- module=self.module
131
- )
132
- self.module.quant_state = n.quant_state
133
- self.data = n.data
134
- self.quant_state = n.quant_state
135
- return n
136
-
137
-
138
- class ForgeLoader4Bit(torch.nn.Module):
139
- def __init__(self, *, device, dtype, quant_type, **kwargs):
140
- super().__init__()
141
- self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
142
- self.weight = None
143
- self.quant_state = None
144
- self.bias = None
145
- self.quant_type = quant_type
146
-
147
- def _save_to_state_dict(self, destination, prefix, keep_vars):
148
- super()._save_to_state_dict(destination, prefix, keep_vars)
149
- quant_state = getattr(self.weight, "quant_state", None)
150
- if quant_state is not None:
151
- for k, v in quant_state.as_dict(packed=True).items():
152
- destination[prefix + "weight." + k] = v if keep_vars else v.detach()
153
- return
154
-
155
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
156
- quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
157
-
158
- if any('bitsandbytes' in k for k in quant_state_keys):
159
- quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
160
-
161
- self.weight = ForgeParams4bit.from_prequantized(
162
- data=state_dict[prefix + 'weight'],
163
- quantized_stats=quant_state_dict,
164
- requires_grad=False,
165
- # device=self.dummy.device,
166
- device=torch.device('cuda'),
167
- module=self
168
- )
169
- self.quant_state = self.weight.quant_state
170
-
171
- if prefix + 'bias' in state_dict:
172
- self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
173
-
174
- del self.dummy
175
- elif hasattr(self, 'dummy'):
176
- if prefix + 'weight' in state_dict:
177
- self.weight = ForgeParams4bit(
178
- state_dict[prefix + 'weight'].to(self.dummy),
179
- requires_grad=False,
180
- compress_statistics=True,
181
- quant_type=self.quant_type,
182
- quant_storage=torch.uint8,
183
- module=self,
184
- )
185
- self.quant_state = self.weight.quant_state
186
-
187
- if prefix + 'bias' in state_dict:
188
- self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
189
-
190
- del self.dummy
191
- else:
192
- super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
193
-
194
-
195
- class Linear(ForgeLoader4Bit):
196
- def __init__(self, *args, device=None, dtype=None, **kwargs):
197
- super().__init__(device=device, dtype=dtype, quant_type='nf4')
198
-
199
- def forward(self, x):
200
- self.weight.quant_state = self.quant_state
201
-
202
- if self.bias is not None and self.bias.dtype != x.dtype:
203
- # Maybe this can also be set to all non-bnb ops since the cost is very low.
204
- # And it only invokes one time, and most linear does not have bias
205
- self.bias.data = self.bias.data.to(x.dtype)
206
-
207
- return functional_linear_4bits(x, self.weight, self.bias)
208
-
209
-
210
- nn.Linear = Linear
211
-
212
-
213
- # ---------------- Model ----------------
214
-
215
-
216
- def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
217
- q, k = apply_rope(q, k, pe)
218
-
219
- x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
220
- # x = rearrange(x, "B H L D -> B L (H D)")
221
- x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
222
-
223
- return x
224
-
225
-
226
- def rope(pos, dim, theta):
227
- scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
228
- omega = 1.0 / (theta ** scale)
229
-
230
- # out = torch.einsum("...n,d->...nd", pos, omega)
231
- out = pos.unsqueeze(-1) * omega.unsqueeze(0)
232
-
233
- cos_out = torch.cos(out)
234
- sin_out = torch.sin(out)
235
- out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
236
-
237
- # out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
238
- b, n, d, _ = out.shape
239
- out = out.view(b, n, d, 2, 2)
240
-
241
- return out.float()
242
-
243
-
244
- def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
245
- xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
246
- xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
247
- xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
248
- xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
249
- return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
250
-
251
-
252
- class EmbedND(nn.Module):
253
- def __init__(self, dim: int, theta: int, axes_dim: list[int]):
254
- super().__init__()
255
- self.dim = dim
256
- self.theta = theta
257
- self.axes_dim = axes_dim
258
-
259
- def forward(self, ids: Tensor) -> Tensor:
260
- n_axes = ids.shape[-1]
261
- emb = torch.cat(
262
- [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
263
- dim=-3,
264
- )
265
-
266
- return emb.unsqueeze(1)
267
-
268
-
269
- def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
270
- """
271
- Create sinusoidal timestep embeddings.
272
- :param t: a 1-D Tensor of N indices, one per batch element.
273
- These may be fractional.
274
- :param dim: the dimension of the output.
275
- :param max_period: controls the minimum frequency of the embeddings.
276
- :return: an (N, D) Tensor of positional embeddings.
277
- """
278
- t = time_factor * t
279
- half = dim // 2
280
-
281
- # Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
282
- # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
283
-
284
- # Block CUDA steam, but consistent with official codes:
285
- freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
286
-
287
- args = t[:, None].float() * freqs[None]
288
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
289
- if dim % 2:
290
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
291
- if torch.is_floating_point(t):
292
- embedding = embedding.to(t)
293
- return embedding
294
-
295
-
296
- class MLPEmbedder(nn.Module):
297
- def __init__(self, in_dim: int, hidden_dim: int):
298
- super().__init__()
299
- self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
300
- self.silu = nn.SiLU()
301
- self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
302
-
303
- def forward(self, x: Tensor) -> Tensor:
304
- return self.out_layer(self.silu(self.in_layer(x)))
305
-
306
-
307
- class RMSNorm(torch.nn.Module):
308
- def __init__(self, dim: int):
309
- super().__init__()
310
- self.scale = nn.Parameter(torch.ones(dim))
311
-
312
- def forward(self, x: Tensor):
313
- x_dtype = x.dtype
314
- x = x.float()
315
- rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
316
- return (x * rrms).to(dtype=x_dtype) * self.scale
317
-
318
-
319
- class QKNorm(torch.nn.Module):
320
- def __init__(self, dim: int):
321
- super().__init__()
322
- self.query_norm = RMSNorm(dim)
323
- self.key_norm = RMSNorm(dim)
324
-
325
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
326
- q = self.query_norm(q)
327
- k = self.key_norm(k)
328
- return q.to(v), k.to(v)
329
-
330
-
331
- class SelfAttention(nn.Module):
332
- def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
333
- super().__init__()
334
- self.num_heads = num_heads
335
- head_dim = dim // num_heads
336
-
337
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
338
- self.norm = QKNorm(head_dim)
339
- self.proj = nn.Linear(dim, dim)
340
-
341
- def forward(self, x: Tensor, pe: Tensor) -> Tensor:
342
- qkv = self.qkv(x)
343
- # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
344
- B, L, _ = qkv.shape
345
- qkv = qkv.view(B, L, 3, self.num_heads, -1)
346
- q, k, v = qkv.permute(2, 0, 3, 1, 4)
347
- q, k = self.norm(q, k, v)
348
- x = attention(q, k, v, pe=pe)
349
- x = self.proj(x)
350
- return x
351
-
352
-
353
- @dataclass
354
- class ModulationOut:
355
- shift: Tensor
356
- scale: Tensor
357
- gate: Tensor
358
-
359
-
360
- class Modulation(nn.Module):
361
- def __init__(self, dim: int, double: bool):
362
- super().__init__()
363
- self.is_double = double
364
- self.multiplier = 6 if double else 3
365
- self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
366
-
367
- def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
368
- out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
369
-
370
- return (
371
- ModulationOut(*out[:3]),
372
- ModulationOut(*out[3:]) if self.is_double else None,
373
- )
374
-
375
-
376
- class DoubleStreamBlock(nn.Module):
377
- def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
378
- super().__init__()
379
-
380
- mlp_hidden_dim = int(hidden_size * mlp_ratio)
381
- self.num_heads = num_heads
382
- self.hidden_size = hidden_size
383
- self.img_mod = Modulation(hidden_size, double=True)
384
- self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
385
- self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
386
-
387
- self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
388
- self.img_mlp = nn.Sequential(
389
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
390
- nn.GELU(approximate="tanh"),
391
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
392
- )
393
-
394
- self.txt_mod = Modulation(hidden_size, double=True)
395
- self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
396
- self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
397
-
398
- self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
399
- self.txt_mlp = nn.Sequential(
400
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
401
- nn.GELU(approximate="tanh"),
402
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
403
- )
404
-
405
- def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
406
- img_mod1, img_mod2 = self.img_mod(vec)
407
- txt_mod1, txt_mod2 = self.txt_mod(vec)
408
-
409
- # prepare image for attention
410
- img_modulated = self.img_norm1(img)
411
- img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
412
- img_qkv = self.img_attn.qkv(img_modulated)
413
- # img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
414
- B, L, _ = img_qkv.shape
415
- H = self.num_heads
416
- D = img_qkv.shape[-1] // (3 * H)
417
- img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
418
- img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
419
-
420
- # prepare txt for attention
421
- txt_modulated = self.txt_norm1(txt)
422
- txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
423
- txt_qkv = self.txt_attn.qkv(txt_modulated)
424
- # txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
425
- B, L, _ = txt_qkv.shape
426
- txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
427
- txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
428
-
429
- # run actual attention
430
- q = torch.cat((txt_q, img_q), dim=2)
431
- k = torch.cat((txt_k, img_k), dim=2)
432
- v = torch.cat((txt_v, img_v), dim=2)
433
-
434
- attn = attention(q, k, v, pe=pe)
435
- txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
436
-
437
- # calculate the img bloks
438
- img = img + img_mod1.gate * self.img_attn.proj(img_attn)
439
- img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
440
-
441
- # calculate the txt bloks
442
- txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
443
- txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
444
- return img, txt
445
-
446
-
447
- class SingleStreamBlock(nn.Module):
448
- """
449
- A DiT block with parallel linear layers as described in
450
- https://arxiv.org/abs/2302.05442 and adapted modulation interface.
451
- """
452
-
453
- def __init__(
454
- self,
455
- hidden_size: int,
456
- num_heads: int,
457
- mlp_ratio: float = 4.0,
458
- qk_scale: float | None = None,
459
- ):
460
- super().__init__()
461
- self.hidden_dim = hidden_size
462
- self.num_heads = num_heads
463
- head_dim = hidden_size // num_heads
464
- self.scale = qk_scale or head_dim**-0.5
465
-
466
- self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
467
- # qkv and mlp_in
468
- self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
469
- # proj and mlp_out
470
- self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
471
-
472
- self.norm = QKNorm(head_dim)
473
-
474
- self.hidden_size = hidden_size
475
- self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
476
-
477
- self.mlp_act = nn.GELU(approximate="tanh")
478
- self.modulation = Modulation(hidden_size, double=False)
479
-
480
- def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
481
- mod, _ = self.modulation(vec)
482
- x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
483
- qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
484
-
485
- # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
486
- qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
487
- q, k, v = qkv.permute(2, 0, 3, 1, 4)
488
- q, k = self.norm(q, k, v)
489
-
490
- # compute attention
491
- attn = attention(q, k, v, pe=pe)
492
- # compute activation in mlp stream, cat again and run second linear layer
493
- output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
494
- return x + mod.gate * output
495
-
496
-
497
- class LastLayer(nn.Module):
498
- def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
499
- super().__init__()
500
- self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
501
- self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
502
- self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
503
-
504
- def forward(self, x: Tensor, vec: Tensor) -> Tensor:
505
- shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
506
- x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
507
- x = self.linear(x)
508
- return x
509
-
510
-
511
- class FluxParams:
512
- in_channels: int = 64
513
- vec_in_dim: int = 768
514
- context_in_dim: int = 4096
515
- hidden_size: int = 3072
516
- mlp_ratio: float = 4.0
517
- num_heads: int = 24
518
- depth: int = 19
519
- depth_single_blocks: int = 38
520
- axes_dim: list = [16, 56, 56]
521
- theta: int = 10_000
522
- qkv_bias: bool = True
523
- guidance_embed: bool = True
524
-
525
-
526
- class Flux(nn.Module):
527
- """
528
- Transformer model for flow matching on sequences.
529
- """
530
-
531
- def __init__(self, params = FluxParams()):
532
- super().__init__()
533
-
534
- self.params = params
535
- self.in_channels = params.in_channels
536
- self.out_channels = self.in_channels
537
- if params.hidden_size % params.num_heads != 0:
538
- raise ValueError(
539
- f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
540
- )
541
- pe_dim = params.hidden_size // params.num_heads
542
- if sum(params.axes_dim) != pe_dim:
543
- raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
544
- self.hidden_size = params.hidden_size
545
- self.num_heads = params.num_heads
546
- self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
547
- self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
548
- self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
549
- self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
550
- self.guidance_in = (
551
- MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
552
- )
553
- self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
554
-
555
- self.double_blocks = nn.ModuleList(
556
- [
557
- DoubleStreamBlock(
558
- self.hidden_size,
559
- self.num_heads,
560
- mlp_ratio=params.mlp_ratio,
561
- qkv_bias=params.qkv_bias,
562
- )
563
- for _ in range(params.depth)
564
- ]
565
- )
566
-
567
- self.single_blocks = nn.ModuleList(
568
- [
569
- SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
570
- for _ in range(params.depth_single_blocks)
571
- ]
572
- )
573
-
574
- self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
575
-
576
- def forward(
577
- self,
578
- img: Tensor,
579
- img_ids: Tensor,
580
- txt: Tensor,
581
- txt_ids: Tensor,
582
- timesteps: Tensor,
583
- y: Tensor,
584
- guidance: Tensor | None = None,
585
- ) -> Tensor:
586
- if img.ndim != 3 or txt.ndim != 3:
587
- raise ValueError("Input img and txt tensors must have 3 dimensions.")
588
-
589
- # running on sequences img
590
- img = self.img_in(img)
591
- vec = self.time_in(timestep_embedding(timesteps, 256))
592
- if self.params.guidance_embed:
593
- if guidance is None:
594
- raise ValueError("Didn't get guidance strength for guidance distilled model.")
595
- vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
596
- vec = vec + self.vector_in(y)
597
- txt = self.txt_in(txt)
598
-
599
- ids = torch.cat((txt_ids, img_ids), dim=1)
600
- pe = self.pe_embedder(ids)
601
-
602
- for block in self.double_blocks:
603
- img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
604
-
605
- img = torch.cat((txt, img), 1)
606
- for block in self.single_blocks:
607
- img = block(img, vec=vec, pe=pe)
608
- img = img[:, txt.shape[1] :, ...]
609
-
610
- img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
611
- return img
612
-
613
-
614
- def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
615
- bs, c, h, w = img.shape
616
- if bs == 1 and not isinstance(prompt, str):
617
- bs = len(prompt)
618
-
619
- img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
620
- if img.shape[0] == 1 and bs > 1:
621
- img = repeat(img, "1 ... -> bs ...", bs=bs)
622
-
623
- img_ids = torch.zeros(h // 2, w // 2, 3)
624
- img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
625
- img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
626
- img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
627
-
628
- if isinstance(prompt, str):
629
- prompt = [prompt]
630
- txt = t5(prompt)
631
- if txt.shape[0] == 1 and bs > 1:
632
- txt = repeat(txt, "1 ... -> bs ...", bs=bs)
633
- txt_ids = torch.zeros(bs, txt.shape[1], 3)
634
-
635
- vec = clip(prompt)
636
- if vec.shape[0] == 1 and bs > 1:
637
- vec = repeat(vec, "1 ... -> bs ...", bs=bs)
638
-
639
- return {
640
- "img": img,
641
- "img_ids": img_ids.to(img.device),
642
- "txt": txt.to(img.device),
643
- "txt_ids": txt_ids.to(img.device),
644
- "vec": vec.to(img.device),
645
- }
646
-
647
-
648
- def time_shift(mu: float, sigma: float, t: Tensor):
649
- return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
650
-
651
-
652
- def get_lin_function(
653
- x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
654
- ) -> Callable[[float], float]:
655
- m = (y2 - y1) / (x2 - x1)
656
- b = y1 - m * x1
657
- return lambda x: m * x + b
658
-
659
-
660
- def get_schedule(
661
- num_steps: int,
662
- image_seq_len: int,
663
- base_shift: float = 0.5,
664
- max_shift: float = 1.15,
665
- shift: bool = True,
666
- ) -> list[float]:
667
- # extra step for zero
668
- timesteps = torch.linspace(1, 0, num_steps + 1)
669
-
670
- # shifting the schedule to favor high timesteps for higher signal images
671
- if shift:
672
- # eastimate mu based on linear estimation between two points
673
- mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
674
- timesteps = time_shift(mu, 1.0, timesteps)
675
-
676
- return timesteps.tolist()
677
-
678
-
679
- def denoise(
680
- model: Flux,
681
- # model input
682
- img: Tensor,
683
- img_ids: Tensor,
684
- txt: Tensor,
685
- txt_ids: Tensor,
686
- vec: Tensor,
687
- # sampling parameters
688
- timesteps: list[float],
689
- guidance: float = 4.0,
690
- ):
691
- # this is ignored for schnell
692
- guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
693
- for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
694
- t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
695
- pred = model(
696
- img=img,
697
- img_ids=img_ids,
698
- txt=txt,
699
- txt_ids=txt_ids,
700
- y=vec,
701
- timesteps=t_vec,
702
- guidance=guidance_vec,
703
- )
704
- img = img + (t_prev - t_curr) * pred
705
- return img
706
-
707
-
708
- def unpack(x: Tensor, height: int, width: int) -> Tensor:
709
- return rearrange(
710
- x,
711
- "b (h w) (c ph pw) -> b c (h ph) (w pw)",
712
- h=math.ceil(height / 16),
713
- w=math.ceil(width / 16),
714
- ph=2,
715
- pw=2,
716
- )
717
-
718
- @dataclass
719
- class SamplingOptions:
720
- prompt: str
721
- width: int
722
- height: int
723
- guidance: float
724
- seed: int | None
725
-
726
-
727
- def get_image(image) -> torch.Tensor | None:
728
- if image is None:
729
- return None
730
- image = Image.fromarray(image).convert("RGB")
731
-
732
- transform = transforms.Compose([
733
- transforms.ToTensor(),
734
- transforms.Lambda(lambda x: 2.0 * x - 1.0),
735
- ])
736
- img: torch.Tensor = transform(image)
737
- return img[None, ...]
738
-
739
-
740
- # ---------------- Demo ----------------
741
-
742
-
743
- from huggingface_hub import hf_hub_download
744
- from safetensors.torch import load_file
745
-
746
- sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
747
- sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
748
- model = Flux().to(dtype=torch.bfloat16, device="cuda")
749
- result = model.load_state_dict(sd)
750
- model_zero_init = False
751
-
752
- # model = Flux().to(dtype=torch.bfloat16, device="cuda")
753
- # result = model.load_state_dict(load_file("/storage/dev/nyanko/flux-dev/flux1-dev.sft"))
754
-
755
-
756
- # 기존 import 문들은 유지...
757
-
758
- # 언어 모델 딕셔너리 추가
759
- LANGUAGE_MODELS = {
760
- "Korean": "Helsinki-NLP/opus-mt-ko-en",
761
- "Japanese": "Helsinki-NLP/opus-mt-ja-en",
762
- "Chinese": "Helsinki-NLP/opus-mt-zh-en",
763
- "Russian": "Helsinki-NLP/opus-mt-ru-en",
764
- "Spanish": "Helsinki-NLP/opus-mt-es-en",
765
- "French": "Helsinki-NLP/opus-mt-fr-en",
766
- "Arabic": "Helsinki-NLP/opus-mt-ar-en",
767
- "Bengali": "Helsinki-NLP/opus-mt-bn-en",
768
- "Estonian": "Helsinki-NLP/opus-mt-et-en",
769
- "Polish": "Helsinki-NLP/opus-mt-pl-en",
770
- "Swedish": "Helsinki-NLP/opus-mt-sv-en",
771
- "Thai": "Helsinki-NLP/opus-mt-th-en",
772
- "Urdu": "Helsinki-NLP/opus-mt-ur-en",
773
- "Bulgarian": "Helsinki-NLP/opus-mt-bg-en",
774
- "Catalan": "Helsinki-NLP/opus-mt-ca-en",
775
- "Czech": "Helsinki-NLP/opus-mt-cs-en",
776
- "Azerbaijani": "Helsinki-NLP/opus-mt-az-en",
777
- "Basque": "Helsinki-NLP/opus-mt-bat-en",
778
- "Bicolano": "Helsinki-NLP/opus-mt-bcl-en",
779
- "Bemba": "Helsinki-NLP/opus-mt-bem-en",
780
- "Berber": "Helsinki-NLP/opus-mt-ber-en",
781
- "Bislama": "Helsinki-NLP/opus-mt-bi-en",
782
- "Bantu": "Helsinki-NLP/opus-mt-bnt-en",
783
- "Brazilian Sign Language": "Helsinki-NLP/opus-mt-bzs-en",
784
- "Caucasian": "Helsinki-NLP/opus-mt-cau-en",
785
- "Cebuano": "Helsinki-NLP/opus-mt-ceb-en",
786
- "Celtic": "Helsinki-NLP/opus-mt-cel-en",
787
- "Chuukese": "Helsinki-NLP/opus-mt-chk-en",
788
- "Creoles and pidgins (French)": "Helsinki-NLP/opus-mt-cpf-en",
789
- "Seychelles Creole": "Helsinki-NLP/opus-mt-crs-en",
790
- "American Sign Language": "Helsinki-NLP/opus-mt-ase-en",
791
- "Artificial Language": "Helsinki-NLP/opus-mt-art-en",
792
- "Atlantic-Congo": "Helsinki-NLP/opus-mt-alv-en",
793
- "Afroasiatic": "Helsinki-NLP/opus-mt-afa-en",
794
- "Afrikaans": "Helsinki-NLP/opus-mt-af-en",
795
- "Austroasiatic": "Helsinki-NLP/opus-mt-aav-en"
796
- }
797
-
798
- # 번역기 딕셔너리를 저장할 전역 변수
799
- translators = {}
800
-
801
- def get_translator(language):
802
- """필요할 때만 번역기를 로드하는 지연 초기화 함수"""
803
- if language not in translators and language in LANGUAGE_MODELS:
804
- translators[language] = pipeline("translation", model=LANGUAGE_MODELS[language])
805
- return translators.get(language)
806
-
807
- @spaces.GPU
808
- @torch.no_grad()
809
- def generate_image(
810
- prompt, width, height, guidance, inference_steps, seed,
811
- do_img2img, init_image, image2image_strength, resize_img,
812
- selected_language="Auto",
813
- progress=gr.Progress(track_tqdm=True),
814
- ):
815
- translated_prompt = prompt
816
-
817
- if selected_language != "Auto":
818
- translator = get_translator(selected_language)
819
- if translator:
820
- translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
821
- print(f"Translated from {selected_language}: {translated_prompt}")
822
-
823
- if seed == 0:
824
- seed = int(random.random() * 1000000)
825
-
826
- device = "cuda" if torch.cuda.is_available() else "cpu"
827
- torch_device = torch.device(device)
828
-
829
- global model, model_zero_init
830
- if not model_zero_init:
831
- model = model.to(torch_device)
832
- model_zero_init = True
833
-
834
- if do_img2img and init_image is not None:
835
- init_image = get_image(init_image)
836
- if resize_img:
837
- init_image = torch.nn.functional.interpolate(init_image, (height, width))
838
- else:
839
- h, w = init_image.shape[-2:]
840
- init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
841
- height = init_image.shape[-2]
842
- width = init_image.shape[-1]
843
- init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
844
- init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
845
-
846
- generator = torch.Generator(device=device).manual_seed(seed)
847
- x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16),
848
- device=device, dtype=torch.bfloat16, generator=generator)
849
-
850
- num_steps = inference_steps
851
- timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
852
-
853
- if do_img2img and init_image is not None:
854
- t_idx = int((1 - image2image_strength) * num_steps)
855
- t = timesteps[t_idx]
856
- timesteps = timesteps[t_idx:]
857
- x = t * x + (1.0 - t) * init_image.to(x.dtype)
858
-
859
- inp = prepare(t5=t5, clip=clip, img=x, prompt=translated_prompt)
860
- x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
861
-
862
- x = unpack(x.float(), height, width)
863
- with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
864
- x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
865
- x = ae.decode(x).sample
866
-
867
- x = x.clamp(-1, 1)
868
- x = rearrange(x[0], "c h w -> h w c")
869
- img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
870
-
871
- return img, seed, translated_prompt
872
-
873
-
874
- css = """
875
- footer {
876
- visibility: hidden;
877
- }
878
- """
879
-
880
- def create_demo():
881
- with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
882
- with gr.Row():
883
- with gr.Column():
884
- # 언어 선택 드롭다운 추가
885
- language_selector = gr.Dropdown(
886
- choices=["Auto"] + list(LANGUAGE_MODELS.keys()),
887
- value="Auto",
888
- label="Input language_selector = gr.Dropdown(
889
- choices=["Auto"] + list(LANGUAGE_MODELS.keys()),
890
- value="Auto",
891
- label="Input Language"
892
- )
893
-
894
- prompt = gr.Textbox(
895
- label="Prompt (Multi-language Support)",
896
- value="A cute and fluffy golden retriever puppy sitting upright, holding a neatly designed white sign with bold, colorful lettering that reads 'Have a Happy Day!' in cheerful fonts. The puppy has expressive, sparkling eyes, a happy smile, and fluffy ears slightly flopped. The background is a vibrant and sunny meadow with soft-focus flowers, glowing sunlight filtering through the trees, and a warm golden glow that enhances the joyful atmosphere. The sign is framed with small decorative flowers, adding a charming and wholesome touch. Ensure the text on the sign is clear and legible."
897
- )
898
-
899
- width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=768)
900
- height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
901
- guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
902
- inference_steps = gr.Slider(
903
- label="Inference steps",
904
- minimum=1,
905
- maximum=30,
906
- step=1,
907
- value=30,
908
- )
909
- seed = gr.Number(label="Seed", precision=-1)
910
- do_img2img = gr.Checkbox(label="Image to Image", value=False)
911
- init_image = gr.Image(label="Input Image", visible=False)
912
- image2image_strength = gr.Slider(
913
- minimum=0.0,
914
- maximum=1.0,
915
- step=0.01,
916
- label="Noising strength",
917
- value=0.8,
918
- visible=False
919
- )
920
- resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
921
- generate_button = gr.Button("Generate")
922
-
923
- with gr.Column():
924
- output_image = gr.Image(label="Generated Image")
925
- output_seed = gr.Text(label="Used Seed")
926
- translated_prompt = gr.Text(label="Translated Prompt")
927
-
928
- do_img2img.change(
929
- fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
930
- inputs=[do_img2img],
931
- outputs=[init_image, image2image_strength, resize_img]
932
- )
933
-
934
- generate_button.click(
935
- fn=generate_image,
936
- inputs=[
937
- prompt, width, height, guidance, inference_steps, seed,
938
- do_img2img, init_image, image2image_strength, resize_img,
939
- language_selector
940
- ],
941
- outputs=[output_image, output_seed, translated_prompt]
942
- )
943
-
944
- examples = [
945
- "a tiny astronaut hatching from an egg on the moon",
946
- "a cat holding a sign that says hello world",
947
- "an anime illustration of a wiener schnitzel",
948
- ]
949
-
950
- return demo
951
-
952
- if __name__ == "__main__":
953
- demo = create_demo()
954
- demo.launch()