Every-Text / app.py
ginipick's picture
Update app.py
15cc8b5 verified
raw
history blame
11.5 kB
import os
import time
from os import path
import tempfile
import uuid
import base64
import mimetypes
import json
import io
import random
import string
import torch
from PIL import Image
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Diffusers ๊ด€๋ จ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
import gradio as gr
from diffusers import FluxPipeline
# Google GenAI ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
from google import genai
from google.genai import types
#######################################
# 0. ํ™˜๊ฒฝ์„ค์ •
#######################################
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
CACHE_PATH = path.join(BASE_DIR, "models")
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
os.environ["HF_HUB_CACHE"] = CACHE_PATH
os.environ["HF_HOME"] = CACHE_PATH
# ๊ฐ„๋‹จํ•œ ํƒ€์ด๋จธ ํด๋ž˜์Šค
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
#######################################
# 1. FLUX ํŒŒ์ดํ”„๋ผ์ธ ๋กœ๋“œ
#######################################
if not path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
#######################################
# 2. Google GenAI๋ฅผ ํ†ตํ•œ ์ด๋ฏธ์ง€ ๋‚ด ํ…์ŠคํŠธ ๋ณ€ํ™˜ ํ•จ์ˆ˜
#######################################
def save_binary_file(file_name, data):
"""Google GenAI์—์„œ ์‘๋‹ต๋ฐ›์€ ์ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ์ด๋ฏธ์ง€ ํŒŒ์ผ๋กœ ์ €์žฅ"""
with open(file_name, "wb") as f:
f.write(data)
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
"""
Google GenAI(gemini) ๋ชจ๋ธ์„ ํ†ตํ•ด ์ด๋ฏธ์ง€/ํ…์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜ ๋ณ€ํ™˜.
- text: ๋ณ€๊ฒฝํ•  ํ…์ŠคํŠธ๋‚˜ ๋ช…๋ น์–ด ๋“ฑ ํ”„๋กฌํ”„ํŠธ
- file_name: ์›๋ณธ ์ด๋ฏธ์ง€(์˜ˆ: .png) ๊ฒฝ๋กœ
- model: ์‚ฌ์šฉํ•  gemini ๋ชจ๋ธ ์ด๋ฆ„
"""
# (1) ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ API ํ‚ค ๊ฐ€์ ธ์˜ค๊ธฐ (ํ•„์ˆ˜)
api_key = os.getenv("GAPI_TOKEN", None)
if not api_key:
raise ValueError(
"GAPI_TOKEN ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. "
"Google GenAI API๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” GAPI_TOKEN์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค."
)
# (2) Google Client ์ดˆ๊ธฐํ™”
client = genai.Client(api_key=api_key)
# (3) ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ
files = [client.files.upload(file=file_name)]
# (4) gemini์— ์ „๋‹ฌํ•  Content ์ค€๋น„ (์ด๋ฏธ์ง€ + ํ”„๋กฌํ”„ํŠธ)
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=files[0].uri,
mime_type=files[0].mime_type,
),
types.Part.from_text(text=text),
],
),
]
# (5) ์ƒ์„ฑ/๋ณ€ํ™˜ ์„ค์ •
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
)
text_response = ""
image_path = None
# ์ž„์‹œ ํŒŒ์ผ๋กœ ์ด๋ฏธ์ง€ ๋ฐ›์„ ์ค€๋น„
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
# ์‘๋‹ต ์ŠคํŠธ๋ฆผ ์ฒ˜๋ฆฌ
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
candidate = chunk.candidates[0].content.parts[0]
# inline_data๊ฐ€ ์žˆ์œผ๋ฉด ์ด๋ฏธ์ง€ ์‘๋‹ต
if candidate.inline_data:
save_binary_file(temp_path, candidate.inline_data.data)
print(f"File of mime type {candidate.inline_data.mime_type} saved to: {temp_path}")
image_path = temp_path
break
else:
# ์ด๋ฏธ์ง€ ์—†์ด ํ…์ŠคํŠธ๋งŒ ๋ฐ˜ํ™˜๋˜๋Š” ๊ฒฝ์šฐ
text_response += chunk.text + "\n"
# ์—…๋กœ๋“œํ•œ File ๊ฐ์ฒด ์ œ๊ฑฐ
del files
return image_path, text_response
#######################################
# 3. ์ž„์˜ ์•ŒํŒŒ๋ฒณ ์ƒ์„ฑ์šฉ ํ•จ์ˆ˜
#######################################
def generate_random_letters(length: int) -> str:
"""
length ๊ธธ์ด์˜ ์ž„์˜์˜ ์•ŒํŒŒ๋ฒณ ๋ฌธ์ž์—ด์„ ์ƒ์„ฑํ•ด ๋ฐ˜ํ™˜.
๋Œ€๋ฌธ์ž+์†Œ๋ฌธ์ž(a-z, A-Z) ๋ฒ”์œ„์—์„œ ๋žœ๋ค ๋ฝ‘๊ธฐ.
"""
letters = string.ascii_uppercase + string.ascii_lowercase
return "".join(random.choice(letters) for _ in range(length))
def fill_text_input_with_random(new_text: str) -> str:
"""
"์ƒˆ๋กœ ๋ฐ”๊ฟ€ ํ…์ŠคํŠธ"์˜ ๊ธธ์ด๋ฅผ ์„ธ์–ด, ๊ทธ ๊ธธ์ด๋งŒํผ ์ž„์˜์˜ ์•ŒํŒŒ๋ฒณ ๋ฌธ์ž์—ด ์ƒ์„ฑ ํ›„ ๋ฐ˜ํ™˜.
์ด ๋ฐ˜ํ™˜๊ฐ’์ด ๊ณง "์ด๋ฏธ์ง€ ์•ˆ์— ๋“ค์–ด๊ฐˆ ํ…์ŠคํŠธ" UI(=text_input)์— ํ‘œ์‹œ๋จ.
"""
length = len(new_text)
random_letters = generate_random_letters(length)
return random_letters
#######################################
# 4. Gradio ํ•จ์ˆ˜
#######################################
def generate_initial_image(prompt, text, height, width, steps, scale, seed):
"""
FLUX ํŒŒ์ดํ”„๋ผ์ธ์„ ์‚ฌ์šฉํ•ด 'ํ…์ŠคํŠธ๊ฐ€ ํฌํ•จ๋œ ์ด๋ฏธ์ง€๋ฅผ' ๋จผ์ € ์ƒ์„ฑ.
- prompt ๋‚ด <text>๋ฅผ text๋กœ ์น˜ํ™˜
- <text>๊ฐ€ ์—†๋‹ค๋ฉด "with clear readable text that says '<text>'"๋ฅผ ์ž๋™ ๋ถ™์ž„
"""
if "<text>" in prompt:
combined_prompt = prompt.replace("<text>", text)
else:
combined_prompt = f"{prompt} with clear readable text that says '{text}'"
print(f"[DEBUG] Final combined_prompt: {combined_prompt}")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
result = pipe(
prompt=[combined_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scale),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
return result
def change_text_in_image(original_image, new_text):
"""
Google GenAI์˜ gemini ๋ชจ๋ธ์„ ํ†ตํ•ด,
์—…๋กœ๋“œ๋œ ์ด๋ฏธ์ง€ ๋‚ด๋ถ€์˜ ๋ฌธ๊ตฌ๋ฅผ `new_text`๋กœ ๋ณ€๊ฒฝํ•ด์ฃผ๋Š” ํ•จ์ˆ˜.
(์—ฌ๊ธฐ์„œ๋Š” new_text๊ฐ€ ์ด๋ฏธ ์ž„์˜์˜ ์•ŒํŒŒ๋ฒณ์œผ๋กœ ์ฑ„์›Œ์ง„ ์ƒํƒœ๊ฐ€ ๋จ)
"""
try:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
original_path = tmp.name
original_image.save(original_path)
image_path, text_response = generate_by_google_genai(
text=f"Change the text in this image to: '{new_text}'",
file_name=original_path
)
if image_path:
with open(image_path, "rb") as f:
image_data = f.read()
modified_img = Image.open(io.BytesIO(image_data))
return modified_img, ""
else:
return None, text_response
except Exception as e:
raise gr.Error(f"Error: {e}")
#######################################
# 5. Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
#######################################
with gr.Blocks(title="Flux + Google GenAI + Random Text Replacement") as demo:
gr.Markdown(
"""
# Flux ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ์ƒ์„ฑ + Google GenAI + ์ž„์˜ ์•ŒํŒŒ๋ฒณ ์น˜ํ™˜
**๊ธฐ๋Šฅ ์š”์•ฝ**
1) "์ƒˆ๋กœ ๋ฐ”๊ฟ€ ํ…์ŠคํŠธ"์— ์ž…๋ ฅ๋œ ๋ฌธ์ž์—ด ๊ธธ์ด๋ฅผ ์ธก์ •
2) ๊ทธ ๊ธธ์ด๋งŒํผ **๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ**(๋Œ€์†Œ๋ฌธ์ž)์œผ๋กœ ๊ตฌ์„ฑ๋œ ๋ฌธ์ž์—ด์„ ๋งŒ๋“ค์–ด
3) "์ด๋ฏธ์ง€ ์•ˆ์— ๋“ค์–ด๊ฐˆ ํ…์ŠคํŠธ" ์นธ์— ์ž๋™์œผ๋กœ ์ž…๋ ฅ (์ฆ‰, ์‹ค์ œ ๋ฐ”๋€” ํ…์ŠคํŠธ๋Š” ์™„์ „ํžˆ ๋žœ๋ค)
4) ๊ทธ ํ›„ Google GenAI(gemini)๋กœ ์ด๋ฏธ์ง€ ๋ฌธ์ž๋ฅผ ๊ต์ฒด
---
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("## 1) Step 1: FLUX๋กœ ํ…์ŠคํŠธ ํฌํ•จ ์ด๋ฏธ์ง€ ์ƒ์„ฑ")
prompt_input = gr.Textbox(
lines=3,
label="์ด๋ฏธ์ง€ ์žฅ๋ฉด/๋ฐฐ๊ฒฝ Prompt (use `<text>` placeholder if you like)",
placeholder="e.g. A white cat with speech bubble says <text>"
)
text_input = gr.Textbox(
lines=1,
label="์ด๋ฏธ์ง€ ์•ˆ์— ๋“ค์–ด๊ฐˆ ํ…์ŠคํŠธ",
placeholder="e.g. Hello or ์•ˆ๋…•"
)
with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ • (ํ™•์žฅ)", open=False):
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5)
seed = gr.Number(label="Seed (reproducibility)", value=1234, precision=0)
generate_btn = gr.Button("Generate Base Image", variant="primary")
generated_image = gr.Image(label="Generated Image (with text)", type="pil")
with gr.Column():
gr.Markdown(
"""
## 2) Step 2: "์ƒˆ๋กœ ๋ฐ”๊ฟ€ ํ…์ŠคํŠธ" ๊ธธ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ
์ž„์˜ ์•ŒํŒŒ๋ฒณ์„ "์ด๋ฏธ์ง€ ์•ˆ์— ๋“ค์–ด๊ฐˆ ํ…์ŠคํŠธ"๋กœ ์ž๋™ ์„ค์ • โ†’ ์ด๋ฏธ์ง€ ๊ต์ฒด
"""
)
new_text_input = gr.Textbox(
label="์ƒˆ๋กœ ๋ฐ”๊ฟ€ ํ…์ŠคํŠธ (์ž…๋ ฅ๋œ ๊ธธ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ ์ƒ์„ฑ)",
placeholder="์˜ˆ) Hello123 (๊ธธ์ด 8์ด๋ฉด, 8๊ธ€์ž ๋žœ๋ค)"
)
# (A) ๋จผ์ € "์ƒˆ๋กœ ๋ฐ”๊ฟ€ ํ…์ŠคํŠธ" ๊ธ€์ž์ˆ˜๋ฅผ ์„ธ์–ด, ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ์œผ๋กœ text_input ์ฑ„์šฐ๊ธฐ
# (B) ๊ทธ๋Ÿฐ ๋’ค change_text_in_image() ์‹คํ–‰
modify_btn = gr.Button("Generate Random Letters & Change Text in Image", variant="secondary")
# ์ตœ์ข… ๊ฒฐ๊ณผ
output_img = gr.Image(label="Modified Image", type="pil")
output_txt = gr.Textbox(label="(If only text returned)")
###########################
# 1) Step1 ๋ฒ„ํŠผ ์•ก์…˜
###########################
generate_btn.click(
fn=generate_initial_image,
inputs=[prompt_input, text_input, height, width, steps, scale, seed],
outputs=[generated_image]
)
###########################
# 2) Step2 ๋ฒ„ํŠผ ์•ก์…˜
###########################
# (A) ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ ์ƒ์„ฑํ•ด text_input์— ๋ฐ˜์˜
chain = modify_btn.click(
fn=fill_text_input_with_random,
inputs=[new_text_input],
outputs=[text_input]
)
# (B) ๋ฐฉ๊ธˆ ์—…๋ฐ์ดํŠธ๋œ text_input ๊ฐ’์„ ์ด์šฉํ•ด, ์ด๋ฏธ์ง€ ํ…์ŠคํŠธ ๊ต์ฒด
chain.then(
fn=change_text_in_image,
inputs=[generated_image, text_input],
outputs=[output_img, output_txt]
)
demo.launch(max_threads=20)