|  | import torch | 
					
						
						|  | import numpy as np | 
					
						
						|  | from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler | 
					
						
						|  | from typing import Any, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def calculate_shift( | 
					
						
						|  | image_seq_len, | 
					
						
						|  | base_seq_len: int = 256, | 
					
						
						|  | max_seq_len: int = 4096, | 
					
						
						|  | base_shift: float = 0.5, | 
					
						
						|  | max_shift: float = 1.16, | 
					
						
						|  | ): | 
					
						
						|  | m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | 
					
						
						|  | b = base_shift - m * base_seq_len | 
					
						
						|  | mu = image_seq_len * m + b | 
					
						
						|  | return mu | 
					
						
						|  |  | 
					
						
						|  | def retrieve_timesteps( | 
					
						
						|  | scheduler, | 
					
						
						|  | num_inference_steps: Optional[int] = None, | 
					
						
						|  | device: Optional[Union[str, torch.device]] = None, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | sigmas: Optional[List[float]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if timesteps is not None and sigmas is not None: | 
					
						
						|  | raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | 
					
						
						|  | if timesteps is not None: | 
					
						
						|  | scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | elif sigmas is not None: | 
					
						
						|  | scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | else: | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | return timesteps, num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.inference_mode() | 
					
						
						|  | def flux_pipe_call_that_returns_an_iterable_of_images( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 28, | 
					
						
						|  | timesteps: List[int] = None, | 
					
						
						|  | guidance_scale: float = 3.5, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | joint_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | max_sequence_length: int = 512, | 
					
						
						|  | good_vae: Optional[Any] = None, | 
					
						
						|  | ): | 
					
						
						|  | height = height or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._joint_attention_kwargs = joint_attention_kwargs | 
					
						
						|  | self._interrupt = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size = 1 if isinstance(prompt, str) else len(prompt) | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | 
					
						
						|  | prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | prompt_2=prompt_2, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.transformer.config.in_channels // 4 | 
					
						
						|  | latents, latent_image_ids = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | 
					
						
						|  | image_seq_len = latents.shape[1] | 
					
						
						|  | mu = calculate_shift( | 
					
						
						|  | image_seq_len, | 
					
						
						|  | self.scheduler.config.base_image_seq_len, | 
					
						
						|  | self.scheduler.config.max_image_seq_len, | 
					
						
						|  | self.scheduler.config.base_shift, | 
					
						
						|  | self.scheduler.config.max_shift, | 
					
						
						|  | ) | 
					
						
						|  | timesteps, num_inference_steps = retrieve_timesteps( | 
					
						
						|  | self.scheduler, | 
					
						
						|  | num_inference_steps, | 
					
						
						|  | device, | 
					
						
						|  | timesteps, | 
					
						
						|  | sigmas, | 
					
						
						|  | mu=mu, | 
					
						
						|  | ) | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | if self.interrupt: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | timestep = t.expand(latents.shape[0]).to(latents.dtype) | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.transformer( | 
					
						
						|  | hidden_states=latents, | 
					
						
						|  | timestep=timestep / 1000, | 
					
						
						|  | guidance=guidance, | 
					
						
						|  | pooled_projections=pooled_prompt_embeds, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | txt_ids=text_ids, | 
					
						
						|  | img_ids=latent_image_ids, | 
					
						
						|  | joint_attention_kwargs=self.joint_attention_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) | 
					
						
						|  | latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor | 
					
						
						|  | image = self.vae.decode(latents_for_image, return_dict=False)[0] | 
					
						
						|  | yield self.image_processor.postprocess(image, output_type=output_type)[0] | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | 
					
						
						|  | latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor | 
					
						
						|  | image = good_vae.decode(latents, return_dict=False)[0] | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | yield self.image_processor.postprocess(image, output_type=output_type)[0] | 
					
						
						|  |  |