rohan13's picture
New vectorstore, examples, removed radio selectors and reduced window size
40025b2
raw
history blame
3.7 kB
import gradio as gr
from main import index, run
from gtts import gTTS
import os, time
from transformers import pipeline
p = pipeline("automatic-speech-recognition")
"""Use text to call chat method from main.py"""
models = ["GPT-3.5", "Flan UL2", "Flan T5"]
def add_text(history, text, model):
print("Question asked: " + text)
response = run_model(text, model)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text, model):
start_time = time.time()
print("start time:" + str(start_time))
response = run(text, model)
end_time = time.time()
# If response contains string `SOURCES:`, then add a \n before `SOURCES`
if "SOURCES:" in response:
response = response.replace("SOURCES:", "\nSOURCES:")
# response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print("Time taken: " + str(end_time - start_time))
return response
def get_output(history, audio, model):
txt = p(audio)["text"]
# history.append(( (audio, ) , txt))
audio_path = 'response.wav'
response = run_model(txt, model)
# Remove all text from SOURCES: to the end of the string
trimmed_response = response.split("SOURCES:")[0]
myobj = gTTS(text=trimmed_response, lang='en', slow=False)
myobj.save(audio_path)
# split audio by / and keep the last element
# audio = audio.split("/")[-1]
# audio = audio + ".wav"
history.append(( (audio, ) , (audio_path, )))
print(history)
return history
def set_model(history, model):
print("Model selected: " + model)
history = get_first_message(history)
index(model)
return history
def get_first_message(history):
history = [(None,
'Learn about <a href="https://www.coursera.org/learn/3d-printing-revolution/home">3D printing Revolution</a> course with referred sources. Try out the new voice to voice Q&A on the course! ')]
return history
def bot(history):
return history
with gr.Blocks() as demo:
# Title on top in middle of the page
gr.HTML("<h1 style='text-align: center;color: blue'>Course Assistant - 3D Printing Revolution</h1>")
chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot").style(height=500)
with gr.Row():
# Create radio button to select model
radio = gr.Radio(models, label="Choose a model", value="GPT-3.5", type="value", visible=False)
with gr.Row():
# with gr.Column(scale=0.75):
txt = gr.Textbox(
label="Coursera Voice Q&A Bot",
placeholder="Enter text and press enter, or upload an image", lines=1
)
# with gr.Column(scale=0.25):
audio = gr.Audio(source="microphone", type="filepath", visible=False)
with gr.Row():
gr.Examples(
examples=['What is 3D printing?', 'Who are the instructors of the course?', 'What is the course about?',
'Which software can be used to create a design file for 3D printing?', 'What are the key takeaways from the course?'], inputs=[txt],
label="Examples")
txt.submit(add_text, [chatbot, txt, radio], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
audio.change(fn=get_output, inputs=[chatbot, audio, radio], outputs=[chatbot]).then(
bot, chatbot, chatbot
)
radio.change(fn=set_model, inputs=[chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot)
audio.change(lambda:None, None, audio)
set_model(chatbot, radio.value)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True)