Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import PyPDF2
|
7 |
-
import pdfplumber
|
8 |
from transformers import pipeline, AutoProcessor, AutoModel, AutoTokenizer
|
9 |
from PyPDF2 import PdfReader
|
10 |
import torch
|
@@ -16,33 +15,43 @@ import io
|
|
16 |
|
17 |
#Here is the code
|
18 |
|
19 |
-
summarization = pipeline
|
20 |
synthesiser = pipeline("text-to-speech", model='facebook/mms-tts-eng')
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def summarize_and_speech(pdf_file):
|
|
|
23 |
|
24 |
-
|
25 |
-
pdf_reader = PyPDF2.PdfReader(pdf_bytes_io)
|
26 |
-
abstract_text = pdf_reader.pages[0].extract_text()
|
27 |
-
summary = summarization(abstract_text, max_length=13, min_length=10)[0]['summary_text']
|
28 |
-
print(summary)
|
29 |
|
30 |
-
# Use a text-to-speech model to generate audio
|
31 |
-
synthesiser = pipeline("text-to-speech", model='facebook/mms-tts-eng')
|
32 |
tts_output = synthesiser(summary)
|
33 |
-
print(tts_output)
|
34 |
audio_data = tts_output[0]["audio"]
|
35 |
|
36 |
return summary, audio_data
|
37 |
|
38 |
-
|
39 |
iface = gr.Interface(
|
40 |
-
fn=
|
41 |
inputs=gr.File(label="Upload PDF", type="binary"),
|
42 |
-
outputs=[gr.Textbox(label="Abstract Summary:"), gr.Audio(type="filepath", label="
|
43 |
live=True,
|
44 |
-
title="
|
45 |
-
description="Upload a Research Paper PDF File. The model will generate a one line summary of the Abstract section and a speech audio."
|
46 |
)
|
47 |
|
48 |
iface.launch()
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import PyPDF2
|
|
|
7 |
from transformers import pipeline, AutoProcessor, AutoModel, AutoTokenizer
|
8 |
from PyPDF2 import PdfReader
|
9 |
import torch
|
|
|
15 |
|
16 |
#Here is the code
|
17 |
|
18 |
+
summarization = pipeline('summarization', model='pszemraj/long-t5-tglobal-base-16384-book-summary')
|
19 |
synthesiser = pipeline("text-to-speech", model='facebook/mms-tts-eng')
|
20 |
|
21 |
+
def abstract_extract(uploaded_file):
|
22 |
+
pdf_bytes = BytesIO(uploaded_file)
|
23 |
+
pdf_reader = PyPDF2.PdfReader(pdf_bytes)
|
24 |
+
|
25 |
+
abstract = ""
|
26 |
+
|
27 |
+
for page_number in range(len(pdf_reader.pages)):
|
28 |
+
text = pdf_reader.pages[page_number].extract_text()
|
29 |
+
|
30 |
+
if "abstract" in text.lower():
|
31 |
+
start_index = text.lower().find("abstract")
|
32 |
+
end_index = text.lower().find("introduction")
|
33 |
+
abstract = text[start_index:end_index]
|
34 |
+
break
|
35 |
+
|
36 |
+
return abstract
|
37 |
+
|
38 |
def summarize_and_speech(pdf_file):
|
39 |
+
abstract_text = abstract_extract(pdf_file)
|
40 |
|
41 |
+
summary = summarization(abstract_text, max_length=15, min_length=10)[0]['summary_text']
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
43 |
tts_output = synthesiser(summary)
|
|
|
44 |
audio_data = tts_output[0]["audio"]
|
45 |
|
46 |
return summary, audio_data
|
47 |
|
|
|
48 |
iface = gr.Interface(
|
49 |
+
fn=summarize_and_speech,
|
50 |
inputs=gr.File(label="Upload PDF", type="binary"),
|
51 |
+
outputs=[gr.Textbox(label="Abstract Summary:"), gr.Audio(type="filepath", label="Summary Speech")],
|
52 |
live=True,
|
53 |
+
title="Abstract Research Paper Summarizer",
|
54 |
+
description="Upload a Research Paper PDF File. The model will generate a one line summary of the Abstract section and a speech audio."
|
55 |
)
|
56 |
|
57 |
iface.launch()
|