File size: 1,648 Bytes
fc694c9
 
 
 
eb917b1
64a9db7
4291007
f817344
95e8115
eb917b1
 
 
 
 
9033ce8
 
fc694c9
 
eb917b1
 
 
9033ce8
65694da
123fc86
 
eb917b1
 
 
 
123fc86
eb917b1
0761894
123fc86
0761894
 
 
 
eb917b1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#https://huggingface.co/spaces/gianb/PDF_Summarized_TTS

# Here are the imports

import gradio as gr
import PyPDF2
import pdfplumber
from transformers import pipeline, AutoProcessor, AutoModel, AutoTokenizer
from PyPDF2 import PdfReader
import torch
import soundfile as sf
from IPython.display import Audio
from datasets import load_dataset
from pdfminer.high_level import extract_pages, extract_text
import io

#Here is the code

summarization = pipeline ('summarization', model = "pszemraj/long-t5-tglobal-base-16384-book-summary")

def summarize_and_speech(pdf_file):
        pdf_bytes_io = io.BytesIO(pdf_file)
        pdf_reader = PyPDF2.PdfReader(pdf_bytes_io)
        abstract_text = pdf_reader.pages[1].extract_text()
        summary = summarization(abstract_text, max_length=13, min_length=10)[1]['summary_text']
        
        # Use a text-to-speech model to generate audio
        synthesiser = pipeline("text-to-speech", "facebook/mms-tts-eng")
        tts_output = synthesiser(summary)
        audio_data = tts_output[1]["audio"]

    if "audio" in tts_output[0]:
        audio_data = tts_output[1]["audio"]
    else:
        print("Audio data is not available")


        return summary, audio_data

iface = gr.Interface(
    fn= summarize_and_speech,
    inputs=gr.File(label="Upload PDF", type="binary"),
    outputs=[gr.Textbox(label="Abstract Summary:"), gr.Audio(type="filepath", label="Summary_Speech")],
    live=True,
    title="Abstract_Research_Paper_Summarizer",
    description="Upload a Research Paper PDF File. The model will generate a one line summary of the Abstract section and a speech audio."
)

iface.launch()