# 📝 Document Q&A Demo | CPU-only HF Space import gradio as gr from transformers import pipeline # Load a fast, accurate QA model qa_pipeline = pipeline( "question-answering", model="deepset/roberta-base-squad2", device=-1 # force CPU ) def answer_question(context: str, question: str): if not context.strip() or not question.strip(): return "Please provide both a document context and a question." result = qa_pipeline(question=question, context=context) answer = result["answer"] score = round(result["score"], 3) return f"{answer} (confidence: {score})" with gr.Blocks(title="📝 Document Q&A") as demo: gr.Markdown( "# 📝 Document Q&A\n" "Paste in any text (policy, FAQ, product manual), ask a question, and get an instant answer." ) with gr.Row(): ctx = gr.Textbox(lines=10, placeholder="Paste your document text here...", label="Document Context") qry = gr.Textbox(lines=2, placeholder="Ask a question about the text above...", label="Question") btn = gr.Button("Get Answer 🔍", variant="primary") out = gr.Textbox(label="Answer", interactive=False) btn.click(answer_question, [ctx, qry], out) if __name__ == "__main__": demo.launch(server_name="0.0.0.0")