Spaces:
Running
Running
| import gradio as gr | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| import tempfile | |
| import io | |
| from depth_anything.dpt import DepthAnything_AC | |
| def normalize_depth(disparity_tensor): | |
| """Standard normalization method to convert disparity to depth""" | |
| eps = 1e-6 | |
| disparity_min = disparity_tensor.min() | |
| disparity_max = disparity_tensor.max() | |
| normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps) | |
| return normalized_disparity | |
| def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'): | |
| """Load trained depth estimation model""" | |
| model_configs = { | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'}, | |
| 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'}, | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'} | |
| } | |
| model = DepthAnything_AC(model_configs[encoder]) | |
| if os.path.exists(model_path): | |
| checkpoint = torch.load(model_path, map_location='cpu') | |
| model.load_state_dict(checkpoint, strict=False) | |
| else: | |
| print(f"Warning: Model file {model_path} not found") | |
| model.eval() | |
| if torch.cuda.is_available(): | |
| model.cuda() | |
| return model | |
| def preprocess_image(image, target_size=518): | |
| """Preprocess input image""" | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) | |
| if len(image.shape) == 3 and image.shape[2] == 3: | |
| pass | |
| elif len(image.shape) == 3 and image.shape[2] == 4: | |
| image = image[:, :, :3] | |
| image = image.astype(np.float32) / 255.0 | |
| h, w = image.shape[:2] | |
| scale = target_size / min(h, w) | |
| new_h, new_w = int(h * scale), int(w * scale) | |
| new_h = ((new_h + 13) // 14) * 14 | |
| new_w = ((new_w + 13) // 14) * 14 | |
| image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC) | |
| mean = np.array([0.485, 0.456, 0.406]) | |
| std = np.array([0.229, 0.224, 0.225]) | |
| image = (image - mean) / std | |
| image = torch.from_numpy(image.transpose(2, 0, 1)).float() | |
| image = image.unsqueeze(0) | |
| return image, (h, w) | |
| def postprocess_depth(depth_tensor, original_size): | |
| """Post-process depth map""" | |
| if depth_tensor.dim() == 3: | |
| depth_tensor = depth_tensor.unsqueeze(1) | |
| elif depth_tensor.dim() == 2: | |
| depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1) | |
| h, w = original_size | |
| depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True) | |
| depth = depth.squeeze().cpu().numpy() | |
| return depth | |
| def create_colored_depth_map(depth, colormap='spectral'): | |
| """Create colored depth map""" | |
| if colormap == 'inferno': | |
| depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO) | |
| depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB) | |
| elif colormap == 'spectral': | |
| from matplotlib import cm | |
| spectral_cmap = cm.get_cmap('Spectral_r') | |
| depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8) | |
| depth_colored = depth_colored[:, :, :3] | |
| else: | |
| depth_colored = (depth * 255).astype(np.uint8) | |
| depth_colored = np.stack([depth_colored] * 3, axis=2) | |
| return depth_colored | |
| print("Loading model...") | |
| model = load_model() | |
| print("Model loaded successfully!") | |
| def predict_depth(input_image, colormap_choice): | |
| """Main depth prediction function""" | |
| try: | |
| image_tensor, original_size = preprocess_image(input_image) | |
| if torch.cuda.is_available(): | |
| image_tensor = image_tensor.cuda() | |
| with torch.no_grad(): | |
| prediction = model(image_tensor) | |
| disparity_tensor = prediction['out'] | |
| depth_tensor = normalize_depth(disparity_tensor) | |
| depth = postprocess_depth(depth_tensor, original_size) | |
| depth_colored = create_colored_depth_map(depth, colormap_choice.lower()) | |
| return Image.fromarray(depth_colored) | |
| except Exception as e: | |
| print(f"Error during inference: {str(e)}") | |
| return None | |
| with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(""" | |
| # π Depth Anything AC - Depth Estimation Demo | |
| Upload an image and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image. | |
| ## How to Use | |
| 1. Click the upload area to select an image | |
| 2. Choose your preferred colormap style | |
| 3. Click the "Generate Depth Map" button | |
| 4. View the results and download | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Upload Image", | |
| type="pil", | |
| height=400 | |
| ) | |
| colormap_choice = gr.Dropdown( | |
| choices=["Spectral", "Inferno", "Gray"], | |
| value="Spectral", | |
| label="Colormap" | |
| ) | |
| submit_btn = gr.Button( | |
| "π― Generate Depth Map", | |
| variant="primary", | |
| size="lg" | |
| ) | |
| with gr.Column(): | |
| output_image = gr.Image( | |
| label="Depth Map Result", | |
| type="pil", | |
| height=400 | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["toyset/1.png", "Spectral"], | |
| ["toyset/2.png", "Spectral"], | |
| ["toyset/good.png", "Spectral"], | |
| ] if os.path.exists("toyset") else [], | |
| inputs=[input_image, colormap_choice], | |
| outputs=output_image, | |
| fn=predict_depth, | |
| cache_examples=False, | |
| label="Try these example images" | |
| ) | |
| submit_btn.click( | |
| fn=predict_depth, | |
| inputs=[input_image, colormap_choice], | |
| outputs=output_image, | |
| show_progress=True | |
| ) | |
| gr.Markdown(""" | |
| ## π Notes | |
| - **Spectral**: Rainbow spectrum with distinct near-far contrast | |
| - **Inferno**: Flame spectrum with warm tones | |
| - **Gray**: Grayscale with classic effect | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| show_error=True | |
| ) |