Spaces:
Runtime error
Runtime error
File size: 6,998 Bytes
61db26f 5cc36e5 61db26f 5cc36e5 61db26f 5cc36e5 61db26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Optional
import io
from PIL import Image
import tempfile
import os
import fitz # PyMuPDF
import docx
import pandas as pd
import pptx
from fastapi.middleware.cors import CORSMiddleware
from langdetect import detect
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from fastapi import Request
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Liste des langues supportées
SUPPORTED_LANGUAGES = ["fr", "en", "de", "es", "it", "zh", "ar"]
# Modèles de traduction valides (existants sur Hugging Face)
translation_models = {
"fr-en": "Helsinki-NLP/opus-mt-fr-en",
"en-fr": "Helsinki-NLP/opus-mt-en-fr",
"fr-de": "Helsinki-NLP/opus-mt-fr-de",
"de-fr": "Helsinki-NLP/opus-mt-de-fr",
"fr-es": "Helsinki-NLP/opus-mt-fr-es",
"es-fr": "Helsinki-NLP/opus-mt-es-fr",
"en-zh": "Helsinki-NLP/opus-mt-en-zh",
"zh-en": "Helsinki-NLP/opus-mt-zh-en",
"en-it": "Helsinki-NLP/opus-mt-en-it",
"it-en": "Helsinki-NLP/opus-mt-it-en",
"en-ar": "Helsinki-NLP/opus-mt-en-ar",
"ar-en": "Helsinki-NLP/opus-mt-ar-en",
"en-es": "Helsinki-NLP/opus-mt-en-es",
"en-de": "Helsinki-NLP/opus-mt-en-de",
"es-ar": "Helsinki-NLP/opus-mt-es-ar",
"es-en": "Helsinki-NLP/opus-mt-es-en",
"es-de": "Helsinki-NLP/opus-mt-es-de",
"es-it": "Helsinki-NLP/opus-mt-es-it",
"es-zh": "Helsinki-NLP/opus-mt-es-zh",
"ar-fr": "Helsinki-NLP/opus-mt-ar-fr",
"ar-de": "Helsinki-NLP/opus-mt-ar-de",
"ar-es": "Helsinki-NLP/opus-mt-ar-es",
"ar-it": "Helsinki-NLP/opus-mt-ar-it",
"ar-zh": "Helsinki-NLP/opus-mt-ar-zh",
"de-en": "Helsinki-NLP/opus-mt-de-en",
"de-de": "Helsinki-NLP/opus-mt-de-de",
"de-es": "Helsinki-NLP/opus-mt-de-es",
"de-it": "Helsinki-NLP/opus-mt-de-it",
"de-zh": "Helsinki-NLP/opus-mt-de-zh",
"de-ar": "Helsinki-NLP/opus-mt-de-ar",
"it-fr": "Helsinki-NLP/opus-mt-it-fr",
"it-de": "Helsinki-NLP/opus-mt-it-de",
"it-es": "Helsinki-NLP/opus-mt-it-es",
"it-zh": "Helsinki-NLP/opus-mt-it-zh",
"it-ar": "Helsinki-NLP/opus-mt-it-ar",
"zh-fr": "Helsinki-NLP/opus-mt-zh-fr",
"zh-de": "Helsinki-NLP/opus-mt-zh-en",
"zh-it": "Helsinki-NLP/opus-mt-zh-it",
"zh-es": "Helsinki-NLP/opus-mt-zh-es",
"zh-ar": "Helsinki-NLP/opus-mt-zh-ar",
}
def extract_text_from_pdf(file_path):
text = ""
with fitz.open(file_path) as doc:
for page in doc:
text += page.get_text("text") + "\n"
return text
def extract_text_from_docx(file_path):
doc = docx.Document(file_path)
return "\n".join([p.text for p in doc.paragraphs])
def extract_text_from_pptx(file_path):
presentation = pptx.Presentation(file_path)
text = []
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
def extract_text_from_excel(file_path):
df = pd.read_excel(file_path, engine="openpyxl")
return df.to_string(index=False)
def chunk_text(text, max_length=512):
words = text.split()
chunks, current_chunk = [], []
for word in words:
if len(" ".join(current_chunk) + " " + word) <= max_length:
current_chunk.append(word)
else:
chunks.append(" ".join(current_chunk))
current_chunk = [word]
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def translate_text(text, source_lang, target_lang):
if source_lang not in SUPPORTED_LANGUAGES or target_lang not in SUPPORTED_LANGUAGES:
return None # Langue non supportée
model_key = f"{source_lang}-{target_lang}"
if model_key in translation_models:
model_name = translation_models[model_key]
translator = pipeline("translation", model=model_name)
translated_chunks = [translator(chunk)[0]["translation_text"] for chunk in chunk_text(text)]
return " ".join(translated_chunks)
# Si pas de traduction directe, utiliser l'anglais comme pivot
model_to_en = f"{source_lang}-en"
model_from_en = f"en-{target_lang}"
if model_to_en in translation_models and model_from_en in translation_models:
translator_to_en = pipeline("translation", model=translation_models[model_to_en])
translator_from_en = pipeline("translation", model=translation_models[model_from_en])
intermediate_texts = [translator_to_en(chunk)[0]["translation_text"] for chunk in chunk_text(text)]
intermediate_text = " ".join(intermediate_texts)
final_texts = [translator_from_en(chunk)[0]["translation_text"] for chunk in chunk_text(intermediate_text)]
return " ".join(final_texts)
return None # Pas de modèle disponible
# Monter les fichiers statiques
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/assete", StaticFiles(directory="assete"), name="assete")
# Route pour accéder à la page principale (index.html)
@app.get("/", response_class=HTMLResponse)
async def serve_frontend():
with open("static/prj.html", "r", encoding="utf-8") as f:
return f.read()
@app.post("/translate")
async def translate_document(file: UploadFile = File(...), language: str = Form(...)):
try:
suffix = file.filename.split(".")[-1].lower()
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=f".{suffix}")
temp_file.write(await file.read())
temp_file.close()
extractors = {
"pdf": extract_text_from_pdf,
"docx": extract_text_from_docx,
"pptx": extract_text_from_pptx,
"xls": extract_text_from_excel,
"xlsx": extract_text_from_excel
}
if suffix not in extractors:
return JSONResponse({"error": "Format non supporté"}, status_code=400)
text = extractors[suffix](temp_file.name)
os.remove(temp_file.name)
if not text.strip():
return JSONResponse({"error": "Aucun texte détecté"}, status_code=400)
detected_lang = detect(text)
if detected_lang not in SUPPORTED_LANGUAGES:
return JSONResponse({"error": f"Langue non supportée : {detected_lang}"}, status_code=400)
if detected_lang == language:
return JSONResponse({"translation": text, "note": "Déjà dans la langue choisie."})
translated_text = translate_text(text, detected_lang, language)
if translated_text:
return JSONResponse({"translation": translated_text})
else:
return JSONResponse({"error": "Aucun modèle de traduction trouvé."}, status_code=400)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500) |