File size: 6,998 Bytes
61db26f
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc36e5
 
 
61db26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc36e5
 
 
 
 
 
 
 
 
 
 
61db26f
5cc36e5
61db26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Optional
import io
from PIL import Image
import tempfile
import os
import fitz  # PyMuPDF
import docx
import pandas as pd
import pptx
from fastapi.middleware.cors import CORSMiddleware
from langdetect import detect
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from fastapi import Request
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Liste des langues supportées
SUPPORTED_LANGUAGES = ["fr", "en", "de", "es", "it", "zh", "ar"]

# Modèles de traduction valides (existants sur Hugging Face)
translation_models = {
    "fr-en": "Helsinki-NLP/opus-mt-fr-en",
    "en-fr": "Helsinki-NLP/opus-mt-en-fr",
    "fr-de": "Helsinki-NLP/opus-mt-fr-de",
    "de-fr": "Helsinki-NLP/opus-mt-de-fr",
    "fr-es": "Helsinki-NLP/opus-mt-fr-es",
    "es-fr": "Helsinki-NLP/opus-mt-es-fr",
    "en-zh": "Helsinki-NLP/opus-mt-en-zh",
    "zh-en": "Helsinki-NLP/opus-mt-zh-en",
    "en-it": "Helsinki-NLP/opus-mt-en-it",
    "it-en": "Helsinki-NLP/opus-mt-it-en",
    "en-ar": "Helsinki-NLP/opus-mt-en-ar",
    "ar-en": "Helsinki-NLP/opus-mt-ar-en",
    "en-es": "Helsinki-NLP/opus-mt-en-es",
    "en-de": "Helsinki-NLP/opus-mt-en-de",
    "es-ar": "Helsinki-NLP/opus-mt-es-ar",
    "es-en": "Helsinki-NLP/opus-mt-es-en",
    "es-de": "Helsinki-NLP/opus-mt-es-de",
    "es-it": "Helsinki-NLP/opus-mt-es-it",
    "es-zh": "Helsinki-NLP/opus-mt-es-zh",
    "ar-fr": "Helsinki-NLP/opus-mt-ar-fr",
    "ar-de": "Helsinki-NLP/opus-mt-ar-de",
    "ar-es": "Helsinki-NLP/opus-mt-ar-es",
    "ar-it": "Helsinki-NLP/opus-mt-ar-it",
    "ar-zh": "Helsinki-NLP/opus-mt-ar-zh",
    "de-en": "Helsinki-NLP/opus-mt-de-en",
    "de-de": "Helsinki-NLP/opus-mt-de-de",
    "de-es": "Helsinki-NLP/opus-mt-de-es",
    "de-it": "Helsinki-NLP/opus-mt-de-it",
    "de-zh": "Helsinki-NLP/opus-mt-de-zh",
    "de-ar": "Helsinki-NLP/opus-mt-de-ar",
    "it-fr": "Helsinki-NLP/opus-mt-it-fr",
    "it-de": "Helsinki-NLP/opus-mt-it-de",
    "it-es": "Helsinki-NLP/opus-mt-it-es",
    "it-zh": "Helsinki-NLP/opus-mt-it-zh",
    "it-ar": "Helsinki-NLP/opus-mt-it-ar",
    "zh-fr": "Helsinki-NLP/opus-mt-zh-fr",
    "zh-de": "Helsinki-NLP/opus-mt-zh-en",
    "zh-it": "Helsinki-NLP/opus-mt-zh-it",
    "zh-es": "Helsinki-NLP/opus-mt-zh-es",
    "zh-ar": "Helsinki-NLP/opus-mt-zh-ar",
    

}

def extract_text_from_pdf(file_path):
    text = ""
    with fitz.open(file_path) as doc:
        for page in doc:
            text += page.get_text("text") + "\n"
    return text

def extract_text_from_docx(file_path):
    doc = docx.Document(file_path)
    return "\n".join([p.text for p in doc.paragraphs])

def extract_text_from_pptx(file_path):
    presentation = pptx.Presentation(file_path)
    text = []
    for slide in presentation.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text.append(shape.text)
    return "\n".join(text)

def extract_text_from_excel(file_path):
    df = pd.read_excel(file_path, engine="openpyxl")
    return df.to_string(index=False)

def chunk_text(text, max_length=512):
    words = text.split()
    chunks, current_chunk = [], []

    for word in words:
        if len(" ".join(current_chunk) + " " + word) <= max_length:
            current_chunk.append(word)
        else:
            chunks.append(" ".join(current_chunk))
            current_chunk = [word]

    if current_chunk:
        chunks.append(" ".join(current_chunk))

    return chunks

def translate_text(text, source_lang, target_lang):
    if source_lang not in SUPPORTED_LANGUAGES or target_lang not in SUPPORTED_LANGUAGES:
        return None  # Langue non supportée

    model_key = f"{source_lang}-{target_lang}"
    if model_key in translation_models:
        model_name = translation_models[model_key]
        translator = pipeline("translation", model=model_name)
        translated_chunks = [translator(chunk)[0]["translation_text"] for chunk in chunk_text(text)]
        return " ".join(translated_chunks)

    # Si pas de traduction directe, utiliser l'anglais comme pivot
    model_to_en = f"{source_lang}-en"
    model_from_en = f"en-{target_lang}"

    if model_to_en in translation_models and model_from_en in translation_models:
        translator_to_en = pipeline("translation", model=translation_models[model_to_en])
        translator_from_en = pipeline("translation", model=translation_models[model_from_en])

        intermediate_texts = [translator_to_en(chunk)[0]["translation_text"] for chunk in chunk_text(text)]
        intermediate_text = " ".join(intermediate_texts)

        final_texts = [translator_from_en(chunk)[0]["translation_text"] for chunk in chunk_text(intermediate_text)]
        return " ".join(final_texts)

    return None  # Pas de modèle disponible


# Monter les fichiers statiques
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/assete", StaticFiles(directory="assete"), name="assete")

# Route pour accéder à la page principale (index.html)
@app.get("/", response_class=HTMLResponse)
async def serve_frontend():
    with open("static/prj.html", "r", encoding="utf-8") as f:
        return f.read()

@app.post("/translate")

async def translate_document(file: UploadFile = File(...), language: str = Form(...)):
    try:
        suffix = file.filename.split(".")[-1].lower()
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=f".{suffix}")
        temp_file.write(await file.read())
        temp_file.close()

        extractors = {
            "pdf": extract_text_from_pdf,
            "docx": extract_text_from_docx,
            "pptx": extract_text_from_pptx,
            "xls": extract_text_from_excel,
            "xlsx": extract_text_from_excel
        }

        if suffix not in extractors:
            return JSONResponse({"error": "Format non supporté"}, status_code=400)

        text = extractors[suffix](temp_file.name)
        os.remove(temp_file.name)

        if not text.strip():
            return JSONResponse({"error": "Aucun texte détecté"}, status_code=400)

        detected_lang = detect(text)
        if detected_lang not in SUPPORTED_LANGUAGES:
            return JSONResponse({"error": f"Langue non supportée : {detected_lang}"}, status_code=400)

        if detected_lang == language:
            return JSONResponse({"translation": text, "note": "Déjà dans la langue choisie."})

        translated_text = translate_text(text, detected_lang, language)
        if translated_text:
            return JSONResponse({"translation": translated_text})
        else:
            return JSONResponse({"error": "Aucun modèle de traduction trouvé."}, status_code=400)

    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)