Delete app.py
Browse files
app.py
DELETED
@@ -1,214 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from diffusers import ShapEPipeline, ShapEImg2ImgPipeline
|
4 |
-
from diffusers.utils import export_to_gif
|
5 |
-
import os
|
6 |
-
from huggingface_hub import HfApi, login
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
import gc
|
10 |
-
|
11 |
-
# Force CPU usage
|
12 |
-
device = "cpu"
|
13 |
-
torch.set_num_threads(4)
|
14 |
-
print(f"Using device: {device}")
|
15 |
-
|
16 |
-
def validate_token(token):
|
17 |
-
try:
|
18 |
-
login(token=token)
|
19 |
-
return True
|
20 |
-
except Exception as e:
|
21 |
-
print(f"Token validation error: {str(e)}")
|
22 |
-
return False
|
23 |
-
|
24 |
-
def generate_3d_from_text(prompt, token, guidance_scale=7.0, export_format="obj", progress=gr.Progress()):
|
25 |
-
try:
|
26 |
-
if not validate_token(token):
|
27 |
-
return gr.update(value="Invalid Hugging Face token"), None, None
|
28 |
-
|
29 |
-
print(f"Starting generation: {prompt}")
|
30 |
-
progress(0.1, desc="Loading model...")
|
31 |
-
|
32 |
-
pipe = ShapEPipeline.from_pretrained(
|
33 |
-
"openai/shap-e",
|
34 |
-
torch_dtype=torch.float32,
|
35 |
-
token=token,
|
36 |
-
revision="main",
|
37 |
-
low_cpu_mem_usage=True
|
38 |
-
)
|
39 |
-
|
40 |
-
os.makedirs("outputs", exist_ok=True)
|
41 |
-
safe_prompt = "".join(x for x in prompt if x.isalnum() or x in (" ", "-", "_"))
|
42 |
-
base_filename = f"outputs/{safe_prompt}"
|
43 |
-
|
44 |
-
try:
|
45 |
-
progress(0.3, desc="Creating 3D model...")
|
46 |
-
with torch.no_grad():
|
47 |
-
output = pipe(
|
48 |
-
prompt,
|
49 |
-
guidance_scale=min(guidance_scale, 10.0),
|
50 |
-
num_inference_steps=16
|
51 |
-
)
|
52 |
-
|
53 |
-
progress(0.5, desc="Creating GIF...")
|
54 |
-
gif_path = export_to_gif(output.images, f"{base_filename}.gif")
|
55 |
-
|
56 |
-
progress(0.7, desc="Creating 3D mesh...")
|
57 |
-
mesh_output = pipe(
|
58 |
-
prompt,
|
59 |
-
guidance_scale=min(guidance_scale, 10.0),
|
60 |
-
num_inference_steps=16,
|
61 |
-
output_type="mesh"
|
62 |
-
)
|
63 |
-
|
64 |
-
progress(0.9, desc="Saving files...")
|
65 |
-
output_path = f"{base_filename}.{export_format}"
|
66 |
-
mesh_output.meshes[0].export(output_path)
|
67 |
-
|
68 |
-
del pipe
|
69 |
-
del output
|
70 |
-
del mesh_output
|
71 |
-
gc.collect()
|
72 |
-
|
73 |
-
print(f"Generation completed: {output_path}")
|
74 |
-
progress(1.0, desc="Completed!")
|
75 |
-
return gr.update(value="Generation successful!"), gr.update(value=gif_path), gr.update(value=output_path)
|
76 |
-
|
77 |
-
except Exception as model_error:
|
78 |
-
error_msg = f"Model execution error: {str(model_error)}"
|
79 |
-
print(error_msg)
|
80 |
-
return gr.update(value=error_msg), None, None
|
81 |
-
|
82 |
-
except Exception as e:
|
83 |
-
error_msg = f"General error: {str(e)}"
|
84 |
-
print(error_msg)
|
85 |
-
return gr.update(value=error_msg), None, None
|
86 |
-
|
87 |
-
def generate_3d_from_image(image, token, guidance_scale=7.0, export_format="obj", progress=gr.Progress()):
|
88 |
-
try:
|
89 |
-
if not validate_token(token):
|
90 |
-
return gr.update(value="Invalid Hugging Face token"), None, None
|
91 |
-
|
92 |
-
print("Starting image to 3D generation")
|
93 |
-
progress(0.1, desc="Loading model...")
|
94 |
-
|
95 |
-
pipe = ShapEImg2ImgPipeline.from_pretrained(
|
96 |
-
"openai/shap-e-img2img",
|
97 |
-
torch_dtype=torch.float32,
|
98 |
-
token=token,
|
99 |
-
revision="main",
|
100 |
-
low_cpu_mem_usage=True
|
101 |
-
)
|
102 |
-
|
103 |
-
os.makedirs("outputs", exist_ok=True)
|
104 |
-
|
105 |
-
import time
|
106 |
-
timestamp = int(time.time())
|
107 |
-
base_filename = f"outputs/image_to_3d_{timestamp}"
|
108 |
-
|
109 |
-
try:
|
110 |
-
progress(0.3, desc="Preparing image...")
|
111 |
-
if isinstance(image, str):
|
112 |
-
image = Image.open(image)
|
113 |
-
elif isinstance(image, np.ndarray):
|
114 |
-
image = Image.fromarray(image)
|
115 |
-
|
116 |
-
image = image.resize((128, 128))
|
117 |
-
|
118 |
-
progress(0.5, desc="Creating 3D model...")
|
119 |
-
with torch.no_grad():
|
120 |
-
output = pipe(
|
121 |
-
image=image,
|
122 |
-
guidance_scale=min(guidance_scale, 10.0),
|
123 |
-
num_inference_steps=16
|
124 |
-
)
|
125 |
-
|
126 |
-
progress(0.7, desc="Creating GIF...")
|
127 |
-
gif_path = export_to_gif(output.images, f"{base_filename}.gif")
|
128 |
-
|
129 |
-
progress(0.8, desc="Creating 3D mesh...")
|
130 |
-
mesh_output = pipe(
|
131 |
-
image=image,
|
132 |
-
guidance_scale=min(guidance_scale, 10.0),
|
133 |
-
num_inference_steps=16,
|
134 |
-
output_type="mesh"
|
135 |
-
)
|
136 |
-
|
137 |
-
progress(0.9, desc="Saving files...")
|
138 |
-
output_path = f"{base_filename}.{export_format}"
|
139 |
-
mesh_output.meshes[0].export(output_path)
|
140 |
-
|
141 |
-
del pipe
|
142 |
-
del output
|
143 |
-
del mesh_output
|
144 |
-
gc.collect()
|
145 |
-
|
146 |
-
print(f"Generation completed: {output_path}")
|
147 |
-
progress(1.0, desc="Completed!")
|
148 |
-
return gr.update(value="Generation successful!"), gr.update(value=gif_path), gr.update(value=output_path)
|
149 |
-
|
150 |
-
except Exception as model_error:
|
151 |
-
error_msg = f"Model execution error: {str(model_error)}"
|
152 |
-
print(error_msg)
|
153 |
-
return gr.update(value=error_msg), None, None
|
154 |
-
|
155 |
-
except Exception as e:
|
156 |
-
error_msg = f"General error: {str(e)}"
|
157 |
-
print(error_msg)
|
158 |
-
return gr.update(value=error_msg), None, None
|
159 |
-
|
160 |
-
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
161 |
-
gr.Markdown("# SORA-3D - Text/Image to 3D Model Generator")
|
162 |
-
gr.Markdown("Create 3D models from text or image input. You need a Hugging Face token to use this app.")
|
163 |
-
gr.Markdown("""
|
164 |
-
> **Important Notes**:
|
165 |
-
> - Processing time may be longer on CPU
|
166 |
-
> - Keep guidance scale under 10 for faster results
|
167 |
-
> - Number of steps is fixed at 16
|
168 |
-
> - Image size is optimized for quality/speed
|
169 |
-
""")
|
170 |
-
|
171 |
-
with gr.Tab("Text → 3D"):
|
172 |
-
with gr.Row():
|
173 |
-
with gr.Column():
|
174 |
-
text_input = gr.Textbox(label="Enter description for 3D model", scale=2)
|
175 |
-
text_token = gr.Textbox(label="Hugging Face Token", type="password", scale=2)
|
176 |
-
with gr.Row():
|
177 |
-
text_guidance = gr.Slider(minimum=1, maximum=10, value=7, label="Guidance Scale", scale=1)
|
178 |
-
text_format = gr.Radio(["obj", "glb"], label="Export Format", value="obj", scale=1)
|
179 |
-
text_button = gr.Button("Generate", variant="primary")
|
180 |
-
|
181 |
-
with gr.Column():
|
182 |
-
text_status = gr.Textbox(label="Status", interactive=False)
|
183 |
-
text_preview = gr.Image(label="3D Preview (GIF)", interactive=False)
|
184 |
-
text_file = gr.File(label="3D Model File")
|
185 |
-
|
186 |
-
with gr.Tab("Image → 3D"):
|
187 |
-
with gr.Row():
|
188 |
-
with gr.Column():
|
189 |
-
image_input = gr.Image(label="Image to convert to 3D", type="pil", scale=2)
|
190 |
-
image_token = gr.Textbox(label="Hugging Face Token", type="password", scale=2)
|
191 |
-
with gr.Row():
|
192 |
-
image_guidance = gr.Slider(minimum=1, maximum=10, value=7, label="Guidance Scale", scale=1)
|
193 |
-
image_format = gr.Radio(["obj", "glb"], label="Export Format", value="obj", scale=1)
|
194 |
-
image_button = gr.Button("Generate", variant="primary")
|
195 |
-
|
196 |
-
with gr.Column():
|
197 |
-
image_status = gr.Textbox(label="Status", interactive=False)
|
198 |
-
image_preview = gr.Image(label="3D Preview (GIF)", interactive=False)
|
199 |
-
image_file = gr.File(label="3D Model File")
|
200 |
-
|
201 |
-
text_button.click(
|
202 |
-
generate_3d_from_text,
|
203 |
-
inputs=[text_input, text_token, text_guidance, text_format],
|
204 |
-
outputs=[text_status, text_preview, text_file]
|
205 |
-
)
|
206 |
-
|
207 |
-
image_button.click(
|
208 |
-
generate_3d_from_image,
|
209 |
-
inputs=[image_input, image_token, image_guidance, image_format],
|
210 |
-
outputs=[image_status, image_preview, image_file]
|
211 |
-
)
|
212 |
-
|
213 |
-
if __name__ == "__main__":
|
214 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|