Delete sf3d
Browse files- sf3d/models/sf3d_models_demo.py +0 -1
- sf3d/models/sf3d_models_sf3d_models_camera.py +0 -32
- sf3d/models/sf3d_models_sf3d_models_isosurface.py +0 -229
- sf3d/models/sf3d_models_sf3d_models_mesh.py +0 -172
- sf3d/models/sf3d_models_sf3d_models_network.py +0 -195
- sf3d/models/sf3d_models_sf3d_models_utils.py +0 -292
- sf3d/sf3d_config.yaml +0 -1
- sf3d/sf3d_sf3d_box_uv_unwrap.py +0 -610
- sf3d/sf3d_sf3d_system.py +0 -482
- sf3d/sf3d_sf3d_texture_baker.py +0 -87
- sf3d/sf3d_sf3d_texture_baker.slang +0 -93
- sf3d/sf3d_sf3d_utils.py +0 -91
sf3d/models/sf3d_models_demo.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
demo
|
|
|
|
sf3d/models/sf3d_models_sf3d_models_camera.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass, field
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
from sf3d.models.utils import BaseModule
|
8 |
-
|
9 |
-
|
10 |
-
class LinearCameraEmbedder(BaseModule):
|
11 |
-
@dataclass
|
12 |
-
class Config(BaseModule.Config):
|
13 |
-
in_channels: int = 25
|
14 |
-
out_channels: int = 768
|
15 |
-
conditions: List[str] = field(default_factory=list)
|
16 |
-
|
17 |
-
cfg: Config
|
18 |
-
|
19 |
-
def configure(self) -> None:
|
20 |
-
self.linear = nn.Linear(self.cfg.in_channels, self.cfg.out_channels)
|
21 |
-
|
22 |
-
def forward(self, **kwargs):
|
23 |
-
cond_tensors = []
|
24 |
-
for cond_name in self.cfg.conditions:
|
25 |
-
assert cond_name in kwargs
|
26 |
-
cond = kwargs[cond_name]
|
27 |
-
# cond in shape (B, Nv, ...)
|
28 |
-
cond_tensors.append(cond.view(*cond.shape[:2], -1))
|
29 |
-
cond_tensor = torch.cat(cond_tensors, dim=-1)
|
30 |
-
assert cond_tensor.shape[-1] == self.cfg.in_channels
|
31 |
-
embedding = self.linear(cond_tensor)
|
32 |
-
return embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/models/sf3d_models_sf3d_models_isosurface.py
DELETED
@@ -1,229 +0,0 @@
|
|
1 |
-
from typing import Optional, Tuple
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from jaxtyping import Float, Integer
|
7 |
-
from torch import Tensor
|
8 |
-
|
9 |
-
from .mesh import Mesh
|
10 |
-
|
11 |
-
|
12 |
-
class IsosurfaceHelper(nn.Module):
|
13 |
-
points_range: Tuple[float, float] = (0, 1)
|
14 |
-
|
15 |
-
@property
|
16 |
-
def grid_vertices(self) -> Float[Tensor, "N 3"]:
|
17 |
-
raise NotImplementedError
|
18 |
-
|
19 |
-
@property
|
20 |
-
def requires_instance_per_batch(self) -> bool:
|
21 |
-
return False
|
22 |
-
|
23 |
-
|
24 |
-
class MarchingTetrahedraHelper(IsosurfaceHelper):
|
25 |
-
def __init__(self, resolution: int, tets_path: str):
|
26 |
-
super().__init__()
|
27 |
-
self.resolution = resolution
|
28 |
-
self.tets_path = tets_path
|
29 |
-
|
30 |
-
self.triangle_table: Float[Tensor, "..."]
|
31 |
-
self.register_buffer(
|
32 |
-
"triangle_table",
|
33 |
-
torch.as_tensor(
|
34 |
-
[
|
35 |
-
[-1, -1, -1, -1, -1, -1],
|
36 |
-
[1, 0, 2, -1, -1, -1],
|
37 |
-
[4, 0, 3, -1, -1, -1],
|
38 |
-
[1, 4, 2, 1, 3, 4],
|
39 |
-
[3, 1, 5, -1, -1, -1],
|
40 |
-
[2, 3, 0, 2, 5, 3],
|
41 |
-
[1, 4, 0, 1, 5, 4],
|
42 |
-
[4, 2, 5, -1, -1, -1],
|
43 |
-
[4, 5, 2, -1, -1, -1],
|
44 |
-
[4, 1, 0, 4, 5, 1],
|
45 |
-
[3, 2, 0, 3, 5, 2],
|
46 |
-
[1, 3, 5, -1, -1, -1],
|
47 |
-
[4, 1, 2, 4, 3, 1],
|
48 |
-
[3, 0, 4, -1, -1, -1],
|
49 |
-
[2, 0, 1, -1, -1, -1],
|
50 |
-
[-1, -1, -1, -1, -1, -1],
|
51 |
-
],
|
52 |
-
dtype=torch.long,
|
53 |
-
),
|
54 |
-
persistent=False,
|
55 |
-
)
|
56 |
-
self.num_triangles_table: Integer[Tensor, "..."]
|
57 |
-
self.register_buffer(
|
58 |
-
"num_triangles_table",
|
59 |
-
torch.as_tensor(
|
60 |
-
[0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long
|
61 |
-
),
|
62 |
-
persistent=False,
|
63 |
-
)
|
64 |
-
self.base_tet_edges: Integer[Tensor, "..."]
|
65 |
-
self.register_buffer(
|
66 |
-
"base_tet_edges",
|
67 |
-
torch.as_tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long),
|
68 |
-
persistent=False,
|
69 |
-
)
|
70 |
-
|
71 |
-
tets = np.load(self.tets_path)
|
72 |
-
self._grid_vertices: Float[Tensor, "..."]
|
73 |
-
self.register_buffer(
|
74 |
-
"_grid_vertices",
|
75 |
-
torch.from_numpy(tets["vertices"]).float(),
|
76 |
-
persistent=False,
|
77 |
-
)
|
78 |
-
self.indices: Integer[Tensor, "..."]
|
79 |
-
self.register_buffer(
|
80 |
-
"indices", torch.from_numpy(tets["indices"]).long(), persistent=False
|
81 |
-
)
|
82 |
-
|
83 |
-
self._all_edges: Optional[Integer[Tensor, "Ne 2"]] = None
|
84 |
-
|
85 |
-
center_indices, boundary_indices = self.get_center_boundary_index(
|
86 |
-
self._grid_vertices
|
87 |
-
)
|
88 |
-
self.center_indices: Integer[Tensor, "..."]
|
89 |
-
self.register_buffer("center_indices", center_indices, persistent=False)
|
90 |
-
self.boundary_indices: Integer[Tensor, "..."]
|
91 |
-
self.register_buffer("boundary_indices", boundary_indices, persistent=False)
|
92 |
-
|
93 |
-
def get_center_boundary_index(self, verts):
|
94 |
-
magn = torch.sum(verts**2, dim=-1)
|
95 |
-
|
96 |
-
center_idx = torch.argmin(magn)
|
97 |
-
boundary_neg = verts == verts.max()
|
98 |
-
boundary_pos = verts == verts.min()
|
99 |
-
|
100 |
-
boundary = torch.bitwise_or(boundary_pos, boundary_neg)
|
101 |
-
boundary = torch.sum(boundary.float(), dim=-1)
|
102 |
-
|
103 |
-
boundary_idx = torch.nonzero(boundary)
|
104 |
-
return center_idx, boundary_idx.squeeze(dim=-1)
|
105 |
-
|
106 |
-
def normalize_grid_deformation(
|
107 |
-
self, grid_vertex_offsets: Float[Tensor, "Nv 3"]
|
108 |
-
) -> Float[Tensor, "Nv 3"]:
|
109 |
-
return (
|
110 |
-
(self.points_range[1] - self.points_range[0])
|
111 |
-
/ self.resolution # half tet size is approximately 1 / self.resolution
|
112 |
-
* torch.tanh(grid_vertex_offsets)
|
113 |
-
) # FIXME: hard-coded activation
|
114 |
-
|
115 |
-
@property
|
116 |
-
def grid_vertices(self) -> Float[Tensor, "Nv 3"]:
|
117 |
-
return self._grid_vertices
|
118 |
-
|
119 |
-
@property
|
120 |
-
def all_edges(self) -> Integer[Tensor, "Ne 2"]:
|
121 |
-
if self._all_edges is None:
|
122 |
-
# compute edges on GPU, or it would be VERY SLOW (basically due to the unique operation)
|
123 |
-
edges = torch.tensor(
|
124 |
-
[0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3],
|
125 |
-
dtype=torch.long,
|
126 |
-
device=self.indices.device,
|
127 |
-
)
|
128 |
-
_all_edges = self.indices[:, edges].reshape(-1, 2)
|
129 |
-
_all_edges_sorted = torch.sort(_all_edges, dim=1)[0]
|
130 |
-
_all_edges = torch.unique(_all_edges_sorted, dim=0)
|
131 |
-
self._all_edges = _all_edges
|
132 |
-
return self._all_edges
|
133 |
-
|
134 |
-
def sort_edges(self, edges_ex2):
|
135 |
-
with torch.no_grad():
|
136 |
-
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
|
137 |
-
order = order.unsqueeze(dim=1)
|
138 |
-
|
139 |
-
a = torch.gather(input=edges_ex2, index=order, dim=1)
|
140 |
-
b = torch.gather(input=edges_ex2, index=1 - order, dim=1)
|
141 |
-
|
142 |
-
return torch.stack([a, b], -1)
|
143 |
-
|
144 |
-
def _forward(self, pos_nx3, sdf_n, tet_fx4):
|
145 |
-
with torch.no_grad():
|
146 |
-
occ_n = sdf_n > 0
|
147 |
-
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
|
148 |
-
occ_sum = torch.sum(occ_fx4, -1)
|
149 |
-
valid_tets = (occ_sum > 0) & (occ_sum < 4)
|
150 |
-
occ_sum = occ_sum[valid_tets]
|
151 |
-
|
152 |
-
# find all vertices
|
153 |
-
all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2)
|
154 |
-
all_edges = self.sort_edges(all_edges)
|
155 |
-
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
|
156 |
-
|
157 |
-
unique_edges = unique_edges.long()
|
158 |
-
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
159 |
-
mapping = (
|
160 |
-
torch.ones(
|
161 |
-
(unique_edges.shape[0]), dtype=torch.long, device=pos_nx3.device
|
162 |
-
)
|
163 |
-
* -1
|
164 |
-
)
|
165 |
-
mapping[mask_edges] = torch.arange(
|
166 |
-
mask_edges.sum(), dtype=torch.long, device=pos_nx3.device
|
167 |
-
)
|
168 |
-
idx_map = mapping[idx_map] # map edges to verts
|
169 |
-
|
170 |
-
interp_v = unique_edges[mask_edges]
|
171 |
-
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
|
172 |
-
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
|
173 |
-
edges_to_interp_sdf[:, -1] *= -1
|
174 |
-
|
175 |
-
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
|
176 |
-
|
177 |
-
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
|
178 |
-
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
|
179 |
-
|
180 |
-
idx_map = idx_map.reshape(-1, 6)
|
181 |
-
|
182 |
-
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=pos_nx3.device))
|
183 |
-
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
|
184 |
-
num_triangles = self.num_triangles_table[tetindex]
|
185 |
-
|
186 |
-
# Generate triangle indices
|
187 |
-
faces = torch.cat(
|
188 |
-
(
|
189 |
-
torch.gather(
|
190 |
-
input=idx_map[num_triangles == 1],
|
191 |
-
dim=1,
|
192 |
-
index=self.triangle_table[tetindex[num_triangles == 1]][:, :3],
|
193 |
-
).reshape(-1, 3),
|
194 |
-
torch.gather(
|
195 |
-
input=idx_map[num_triangles == 2],
|
196 |
-
dim=1,
|
197 |
-
index=self.triangle_table[tetindex[num_triangles == 2]][:, :6],
|
198 |
-
).reshape(-1, 3),
|
199 |
-
),
|
200 |
-
dim=0,
|
201 |
-
)
|
202 |
-
|
203 |
-
return verts, faces
|
204 |
-
|
205 |
-
def forward(
|
206 |
-
self,
|
207 |
-
level: Float[Tensor, "N3 1"],
|
208 |
-
deformation: Optional[Float[Tensor, "N3 3"]] = None,
|
209 |
-
) -> Mesh:
|
210 |
-
if deformation is not None:
|
211 |
-
grid_vertices = self.grid_vertices + self.normalize_grid_deformation(
|
212 |
-
deformation
|
213 |
-
)
|
214 |
-
else:
|
215 |
-
grid_vertices = self.grid_vertices
|
216 |
-
|
217 |
-
v_pos, t_pos_idx = self._forward(grid_vertices, level, self.indices)
|
218 |
-
|
219 |
-
mesh = Mesh(
|
220 |
-
v_pos=v_pos,
|
221 |
-
t_pos_idx=t_pos_idx,
|
222 |
-
# extras
|
223 |
-
grid_vertices=grid_vertices,
|
224 |
-
tet_edges=self.all_edges,
|
225 |
-
grid_level=level,
|
226 |
-
grid_deformation=deformation,
|
227 |
-
)
|
228 |
-
|
229 |
-
return mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/models/sf3d_models_sf3d_models_mesh.py
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
from typing import Any, Dict, Optional
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from jaxtyping import Float, Integer
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
from sf3d.box_uv_unwrap import box_projection_uv_unwrap
|
11 |
-
from sf3d.models.utils import dot
|
12 |
-
|
13 |
-
|
14 |
-
class Mesh:
|
15 |
-
def __init__(
|
16 |
-
self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs
|
17 |
-
) -> None:
|
18 |
-
self.v_pos: Float[Tensor, "Nv 3"] = v_pos
|
19 |
-
self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx
|
20 |
-
self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None
|
21 |
-
self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None
|
22 |
-
self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None
|
23 |
-
self._edges: Optional[Integer[Tensor, "Ne 2"]] = None
|
24 |
-
self.extras: Dict[str, Any] = {}
|
25 |
-
for k, v in kwargs.items():
|
26 |
-
self.add_extra(k, v)
|
27 |
-
|
28 |
-
def add_extra(self, k, v) -> None:
|
29 |
-
self.extras[k] = v
|
30 |
-
|
31 |
-
@property
|
32 |
-
def requires_grad(self):
|
33 |
-
return self.v_pos.requires_grad
|
34 |
-
|
35 |
-
@property
|
36 |
-
def v_nrm(self):
|
37 |
-
if self._v_nrm is None:
|
38 |
-
self._v_nrm = self._compute_vertex_normal()
|
39 |
-
return self._v_nrm
|
40 |
-
|
41 |
-
@property
|
42 |
-
def v_tng(self):
|
43 |
-
if self._v_tng is None:
|
44 |
-
self._v_tng = self._compute_vertex_tangent()
|
45 |
-
return self._v_tng
|
46 |
-
|
47 |
-
@property
|
48 |
-
def v_tex(self):
|
49 |
-
if self._v_tex is None:
|
50 |
-
self.unwrap_uv()
|
51 |
-
return self._v_tex
|
52 |
-
|
53 |
-
@property
|
54 |
-
def edges(self):
|
55 |
-
if self._edges is None:
|
56 |
-
self._edges = self._compute_edges()
|
57 |
-
return self._edges
|
58 |
-
|
59 |
-
def _compute_vertex_normal(self):
|
60 |
-
i0 = self.t_pos_idx[:, 0]
|
61 |
-
i1 = self.t_pos_idx[:, 1]
|
62 |
-
i2 = self.t_pos_idx[:, 2]
|
63 |
-
|
64 |
-
v0 = self.v_pos[i0, :]
|
65 |
-
v1 = self.v_pos[i1, :]
|
66 |
-
v2 = self.v_pos[i2, :]
|
67 |
-
|
68 |
-
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
69 |
-
|
70 |
-
# Splat face normals to vertices
|
71 |
-
v_nrm = torch.zeros_like(self.v_pos)
|
72 |
-
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
|
73 |
-
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
|
74 |
-
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
|
75 |
-
|
76 |
-
# Normalize, replace zero (degenerated) normals with some default value
|
77 |
-
v_nrm = torch.where(
|
78 |
-
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
|
79 |
-
)
|
80 |
-
v_nrm = F.normalize(v_nrm, dim=1)
|
81 |
-
|
82 |
-
if torch.is_anomaly_enabled():
|
83 |
-
assert torch.all(torch.isfinite(v_nrm))
|
84 |
-
|
85 |
-
return v_nrm
|
86 |
-
|
87 |
-
def _compute_vertex_tangent(self):
|
88 |
-
vn_idx = [None] * 3
|
89 |
-
pos = [None] * 3
|
90 |
-
tex = [None] * 3
|
91 |
-
for i in range(0, 3):
|
92 |
-
pos[i] = self.v_pos[self.t_pos_idx[:, i]]
|
93 |
-
tex[i] = self.v_tex[self.t_pos_idx[:, i]]
|
94 |
-
# t_nrm_idx is always the same as t_pos_idx
|
95 |
-
vn_idx[i] = self.t_pos_idx[:, i]
|
96 |
-
|
97 |
-
tangents = torch.zeros_like(self.v_nrm)
|
98 |
-
tansum = torch.zeros_like(self.v_nrm)
|
99 |
-
|
100 |
-
# Compute tangent space for each triangle
|
101 |
-
duv1 = tex[1] - tex[0]
|
102 |
-
duv2 = tex[2] - tex[0]
|
103 |
-
dpos1 = pos[1] - pos[0]
|
104 |
-
dpos2 = pos[2] - pos[0]
|
105 |
-
|
106 |
-
tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]
|
107 |
-
|
108 |
-
denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]
|
109 |
-
|
110 |
-
# Avoid division by zero for degenerated texture coordinates
|
111 |
-
denom_safe = denom.clip(1e-6)
|
112 |
-
tang = tng_nom / denom_safe
|
113 |
-
|
114 |
-
# Update all 3 vertices
|
115 |
-
for i in range(0, 3):
|
116 |
-
idx = vn_idx[i][:, None].repeat(1, 3)
|
117 |
-
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
|
118 |
-
tansum.scatter_add_(
|
119 |
-
0, idx, torch.ones_like(tang)
|
120 |
-
) # tansum[n_i] = tansum[n_i] + 1
|
121 |
-
# Also normalize it. Here we do not normalize the individual triangles first so larger area
|
122 |
-
# triangles influence the tangent space more
|
123 |
-
tangents = tangents / tansum
|
124 |
-
|
125 |
-
# Normalize and make sure tangent is perpendicular to normal
|
126 |
-
tangents = F.normalize(tangents, dim=1)
|
127 |
-
tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm)
|
128 |
-
|
129 |
-
if torch.is_anomaly_enabled():
|
130 |
-
assert torch.all(torch.isfinite(tangents))
|
131 |
-
|
132 |
-
return tangents
|
133 |
-
|
134 |
-
@torch.no_grad()
|
135 |
-
def unwrap_uv(
|
136 |
-
self,
|
137 |
-
island_padding: float = 0.02,
|
138 |
-
) -> Mesh:
|
139 |
-
uv, indices = box_projection_uv_unwrap(
|
140 |
-
self.v_pos, self.v_nrm, self.t_pos_idx, island_padding
|
141 |
-
)
|
142 |
-
|
143 |
-
# Do store per vertex UVs.
|
144 |
-
# This means we need to duplicate some vertices at the seams
|
145 |
-
individual_vertices = self.v_pos[self.t_pos_idx].reshape(-1, 3)
|
146 |
-
individual_faces = torch.arange(
|
147 |
-
individual_vertices.shape[0],
|
148 |
-
device=individual_vertices.device,
|
149 |
-
dtype=self.t_pos_idx.dtype,
|
150 |
-
).reshape(-1, 3)
|
151 |
-
uv_flat = uv[indices].reshape((-1, 2))
|
152 |
-
# uv_flat[:, 1] = 1 - uv_flat[:, 1]
|
153 |
-
|
154 |
-
self.v_pos = individual_vertices
|
155 |
-
self.t_pos_idx = individual_faces
|
156 |
-
self._v_tex = uv_flat
|
157 |
-
self._v_nrm = self._compute_vertex_normal()
|
158 |
-
self._v_tng = self._compute_vertex_tangent()
|
159 |
-
|
160 |
-
def _compute_edges(self):
|
161 |
-
# Compute edges
|
162 |
-
edges = torch.cat(
|
163 |
-
[
|
164 |
-
self.t_pos_idx[:, [0, 1]],
|
165 |
-
self.t_pos_idx[:, [1, 2]],
|
166 |
-
self.t_pos_idx[:, [2, 0]],
|
167 |
-
],
|
168 |
-
dim=0,
|
169 |
-
)
|
170 |
-
edges = edges.sort()[0]
|
171 |
-
edges = torch.unique(edges, dim=0)
|
172 |
-
return edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/models/sf3d_models_sf3d_models_network.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass, field
|
2 |
-
from typing import Callable, List, Optional
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from einops import rearrange
|
8 |
-
from jaxtyping import Float
|
9 |
-
from torch import Tensor
|
10 |
-
from torch.autograd import Function
|
11 |
-
from torch.cuda.amp import custom_bwd, custom_fwd
|
12 |
-
|
13 |
-
from sf3d.models.utils import BaseModule, normalize
|
14 |
-
|
15 |
-
|
16 |
-
class PixelShuffleUpsampleNetwork(BaseModule):
|
17 |
-
@dataclass
|
18 |
-
class Config(BaseModule.Config):
|
19 |
-
in_channels: int = 1024
|
20 |
-
out_channels: int = 40
|
21 |
-
scale_factor: int = 4
|
22 |
-
|
23 |
-
conv_layers: int = 4
|
24 |
-
conv_kernel_size: int = 3
|
25 |
-
|
26 |
-
cfg: Config
|
27 |
-
|
28 |
-
def configure(self) -> None:
|
29 |
-
layers = []
|
30 |
-
output_channels = self.cfg.out_channels * self.cfg.scale_factor**2
|
31 |
-
|
32 |
-
in_channels = self.cfg.in_channels
|
33 |
-
for i in range(self.cfg.conv_layers):
|
34 |
-
cur_out_channels = (
|
35 |
-
in_channels if i != self.cfg.conv_layers - 1 else output_channels
|
36 |
-
)
|
37 |
-
layers.append(
|
38 |
-
nn.Conv2d(
|
39 |
-
in_channels,
|
40 |
-
cur_out_channels,
|
41 |
-
self.cfg.conv_kernel_size,
|
42 |
-
padding=(self.cfg.conv_kernel_size - 1) // 2,
|
43 |
-
)
|
44 |
-
)
|
45 |
-
if i != self.cfg.conv_layers - 1:
|
46 |
-
layers.append(nn.ReLU(inplace=True))
|
47 |
-
|
48 |
-
layers.append(nn.PixelShuffle(self.cfg.scale_factor))
|
49 |
-
|
50 |
-
self.upsample = nn.Sequential(*layers)
|
51 |
-
|
52 |
-
def forward(
|
53 |
-
self, triplanes: Float[Tensor, "B 3 Ci Hp Wp"]
|
54 |
-
) -> Float[Tensor, "B 3 Co Hp2 Wp2"]:
|
55 |
-
return rearrange(
|
56 |
-
self.upsample(
|
57 |
-
rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3)
|
58 |
-
),
|
59 |
-
"(B Np) Co Hp Wp -> B Np Co Hp Wp",
|
60 |
-
Np=3,
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
class _TruncExp(Function): # pylint: disable=abstract-method
|
65 |
-
# Implementation from torch-ngp:
|
66 |
-
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
|
67 |
-
@staticmethod
|
68 |
-
@custom_fwd(cast_inputs=torch.float32)
|
69 |
-
def forward(ctx, x): # pylint: disable=arguments-differ
|
70 |
-
ctx.save_for_backward(x)
|
71 |
-
return torch.exp(x)
|
72 |
-
|
73 |
-
@staticmethod
|
74 |
-
@custom_bwd
|
75 |
-
def backward(ctx, g): # pylint: disable=arguments-differ
|
76 |
-
x = ctx.saved_tensors[0]
|
77 |
-
return g * torch.exp(torch.clamp(x, max=15))
|
78 |
-
|
79 |
-
|
80 |
-
trunc_exp = _TruncExp.apply
|
81 |
-
|
82 |
-
|
83 |
-
def get_activation(name) -> Callable:
|
84 |
-
if name is None:
|
85 |
-
return lambda x: x
|
86 |
-
name = name.lower()
|
87 |
-
if name == "none" or name == "linear" or name == "identity":
|
88 |
-
return lambda x: x
|
89 |
-
elif name == "lin2srgb":
|
90 |
-
return lambda x: torch.where(
|
91 |
-
x > 0.0031308,
|
92 |
-
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
|
93 |
-
12.92 * x,
|
94 |
-
).clamp(0.0, 1.0)
|
95 |
-
elif name == "exp":
|
96 |
-
return lambda x: torch.exp(x)
|
97 |
-
elif name == "shifted_exp":
|
98 |
-
return lambda x: torch.exp(x - 1.0)
|
99 |
-
elif name == "trunc_exp":
|
100 |
-
return trunc_exp
|
101 |
-
elif name == "shifted_trunc_exp":
|
102 |
-
return lambda x: trunc_exp(x - 1.0)
|
103 |
-
elif name == "sigmoid":
|
104 |
-
return lambda x: torch.sigmoid(x)
|
105 |
-
elif name == "tanh":
|
106 |
-
return lambda x: torch.tanh(x)
|
107 |
-
elif name == "shifted_softplus":
|
108 |
-
return lambda x: F.softplus(x - 1.0)
|
109 |
-
elif name == "scale_-11_01":
|
110 |
-
return lambda x: x * 0.5 + 0.5
|
111 |
-
elif name == "negative":
|
112 |
-
return lambda x: -x
|
113 |
-
elif name == "normalize_channel_last":
|
114 |
-
return lambda x: normalize(x)
|
115 |
-
elif name == "normalize_channel_first":
|
116 |
-
return lambda x: normalize(x, dim=1)
|
117 |
-
else:
|
118 |
-
try:
|
119 |
-
return getattr(F, name)
|
120 |
-
except AttributeError:
|
121 |
-
raise ValueError(f"Unknown activation function: {name}")
|
122 |
-
|
123 |
-
|
124 |
-
@dataclass
|
125 |
-
class HeadSpec:
|
126 |
-
name: str
|
127 |
-
out_channels: int
|
128 |
-
n_hidden_layers: int
|
129 |
-
output_activation: Optional[str] = None
|
130 |
-
out_bias: float = 0.0
|
131 |
-
|
132 |
-
|
133 |
-
class MaterialMLP(BaseModule):
|
134 |
-
@dataclass
|
135 |
-
class Config(BaseModule.Config):
|
136 |
-
in_channels: int = 120
|
137 |
-
n_neurons: int = 64
|
138 |
-
activation: str = "silu"
|
139 |
-
heads: List[HeadSpec] = field(default_factory=lambda: [])
|
140 |
-
|
141 |
-
cfg: Config
|
142 |
-
|
143 |
-
def configure(self) -> None:
|
144 |
-
assert len(self.cfg.heads) > 0
|
145 |
-
heads = {}
|
146 |
-
for head in self.cfg.heads:
|
147 |
-
head_layers = []
|
148 |
-
for i in range(head.n_hidden_layers):
|
149 |
-
head_layers += [
|
150 |
-
nn.Linear(
|
151 |
-
self.cfg.in_channels if i == 0 else self.cfg.n_neurons,
|
152 |
-
self.cfg.n_neurons,
|
153 |
-
),
|
154 |
-
self.make_activation(self.cfg.activation),
|
155 |
-
]
|
156 |
-
head_layers += [
|
157 |
-
nn.Linear(
|
158 |
-
self.cfg.n_neurons,
|
159 |
-
head.out_channels,
|
160 |
-
),
|
161 |
-
]
|
162 |
-
heads[head.name] = nn.Sequential(*head_layers)
|
163 |
-
self.heads = nn.ModuleDict(heads)
|
164 |
-
|
165 |
-
def make_activation(self, activation):
|
166 |
-
if activation == "relu":
|
167 |
-
return nn.ReLU(inplace=True)
|
168 |
-
elif activation == "silu":
|
169 |
-
return nn.SiLU(inplace=True)
|
170 |
-
else:
|
171 |
-
raise NotImplementedError
|
172 |
-
|
173 |
-
def keys(self):
|
174 |
-
return self.heads.keys()
|
175 |
-
|
176 |
-
def forward(
|
177 |
-
self, x, include: Optional[List] = None, exclude: Optional[List] = None
|
178 |
-
):
|
179 |
-
if include is not None and exclude is not None:
|
180 |
-
raise ValueError("Cannot specify both include and exclude.")
|
181 |
-
if include is not None:
|
182 |
-
heads = [h for h in self.cfg.heads if h.name in include]
|
183 |
-
elif exclude is not None:
|
184 |
-
heads = [h for h in self.cfg.heads if h.name not in exclude]
|
185 |
-
else:
|
186 |
-
heads = self.cfg.heads
|
187 |
-
|
188 |
-
out = {
|
189 |
-
head.name: get_activation(head.output_activation)(
|
190 |
-
self.heads[head.name](x) + head.out_bias
|
191 |
-
)
|
192 |
-
for head in heads
|
193 |
-
}
|
194 |
-
|
195 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/models/sf3d_models_sf3d_models_utils.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
import dataclasses
|
2 |
-
import importlib
|
3 |
-
import math
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from typing import Any, List, Optional, Tuple, Union
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import PIL
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from jaxtyping import Bool, Float, Int, Num
|
13 |
-
from omegaconf import DictConfig, OmegaConf
|
14 |
-
from torch import Tensor
|
15 |
-
|
16 |
-
|
17 |
-
class BaseModule(nn.Module):
|
18 |
-
@dataclass
|
19 |
-
class Config:
|
20 |
-
pass
|
21 |
-
|
22 |
-
cfg: Config # add this to every subclass of BaseModule to enable static type checking
|
23 |
-
|
24 |
-
def __init__(
|
25 |
-
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
|
26 |
-
) -> None:
|
27 |
-
super().__init__()
|
28 |
-
self.cfg = parse_structured(self.Config, cfg)
|
29 |
-
self.configure(*args, **kwargs)
|
30 |
-
|
31 |
-
def configure(self, *args, **kwargs) -> None:
|
32 |
-
raise NotImplementedError
|
33 |
-
|
34 |
-
|
35 |
-
def find_class(cls_string):
|
36 |
-
module_string = ".".join(cls_string.split(".")[:-1])
|
37 |
-
cls_name = cls_string.split(".")[-1]
|
38 |
-
module = importlib.import_module(module_string, package=None)
|
39 |
-
cls = getattr(module, cls_name)
|
40 |
-
return cls
|
41 |
-
|
42 |
-
|
43 |
-
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
|
44 |
-
# Check if cfg.keys are in fields
|
45 |
-
cfg_ = cfg.copy()
|
46 |
-
keys = list(cfg_.keys())
|
47 |
-
|
48 |
-
field_names = {f.name for f in dataclasses.fields(fields)}
|
49 |
-
for key in keys:
|
50 |
-
# This is helpful when swapping out modules from CLI
|
51 |
-
if key not in field_names:
|
52 |
-
print(f"Ignoring {key} as it's not supported by {fields}")
|
53 |
-
cfg_.pop(key)
|
54 |
-
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg_)
|
55 |
-
return scfg
|
56 |
-
|
57 |
-
|
58 |
-
EPS_DTYPE = {
|
59 |
-
torch.float16: 1e-4,
|
60 |
-
torch.bfloat16: 1e-4,
|
61 |
-
torch.float32: 1e-7,
|
62 |
-
torch.float64: 1e-8,
|
63 |
-
}
|
64 |
-
|
65 |
-
|
66 |
-
def dot(x, y, dim=-1):
|
67 |
-
return torch.sum(x * y, dim, keepdim=True)
|
68 |
-
|
69 |
-
|
70 |
-
def reflect(x, n):
|
71 |
-
return x - 2 * dot(x, n) * n
|
72 |
-
|
73 |
-
|
74 |
-
def normalize(x, dim=-1, eps=None):
|
75 |
-
if eps is None:
|
76 |
-
eps = EPS_DTYPE[x.dtype]
|
77 |
-
return F.normalize(x, dim=dim, p=2, eps=eps)
|
78 |
-
|
79 |
-
|
80 |
-
def tri_winding(tri: Float[Tensor, "*B 3 2"]) -> Float[Tensor, "*B 3 3"]:
|
81 |
-
# One pad for determinant
|
82 |
-
tri_sq = F.pad(tri, (0, 1), "constant", 1.0)
|
83 |
-
det_tri = torch.det(tri_sq)
|
84 |
-
tri_rev = torch.cat(
|
85 |
-
(tri_sq[..., 0:1, :], tri_sq[..., 2:3, :], tri_sq[..., 1:2, :]), -2
|
86 |
-
)
|
87 |
-
tri_sq[det_tri < 0] = tri_rev[det_tri < 0]
|
88 |
-
return tri_sq
|
89 |
-
|
90 |
-
|
91 |
-
def triangle_intersection_2d(
|
92 |
-
t1: Float[Tensor, "*B 3 2"],
|
93 |
-
t2: Float[Tensor, "*B 3 2"],
|
94 |
-
eps=1e-12,
|
95 |
-
) -> Float[Tensor, "*B"]: # noqa: F821
|
96 |
-
"""Returns True if triangles collide, False otherwise"""
|
97 |
-
|
98 |
-
def chk_edge(x: Float[Tensor, "*B 3 3"]) -> Bool[Tensor, "*B"]: # noqa: F821
|
99 |
-
logdetx = torch.logdet(x.double())
|
100 |
-
if eps is None:
|
101 |
-
return ~torch.isfinite(logdetx)
|
102 |
-
return ~(torch.isfinite(logdetx) & (logdetx > math.log(eps)))
|
103 |
-
|
104 |
-
t1s = tri_winding(t1)
|
105 |
-
t2s = tri_winding(t2)
|
106 |
-
|
107 |
-
# Assume the triangles do not collide in the begging
|
108 |
-
ret = torch.zeros(t1.shape[0], dtype=torch.bool, device=t1.device)
|
109 |
-
for i in range(3):
|
110 |
-
edge = torch.roll(t1s, i, dims=1)[:, :2, :]
|
111 |
-
# Check if all points of triangle 2 lay on the external side of edge E.
|
112 |
-
# If this is the case the triangle do not collide
|
113 |
-
upd = (
|
114 |
-
chk_edge(torch.cat((edge, t2s[:, 0:1]), 1))
|
115 |
-
& chk_edge(torch.cat((edge, t2s[:, 1:2]), 1))
|
116 |
-
& chk_edge(torch.cat((edge, t2s[:, 2:3]), 1))
|
117 |
-
)
|
118 |
-
# Here no collision is still True due to inversion
|
119 |
-
ret = ret | upd
|
120 |
-
|
121 |
-
for i in range(3):
|
122 |
-
edge = torch.roll(t2s, i, dims=1)[:, :2, :]
|
123 |
-
|
124 |
-
upd = (
|
125 |
-
chk_edge(torch.cat((edge, t1s[:, 0:1]), 1))
|
126 |
-
& chk_edge(torch.cat((edge, t1s[:, 1:2]), 1))
|
127 |
-
& chk_edge(torch.cat((edge, t1s[:, 2:3]), 1))
|
128 |
-
)
|
129 |
-
# Here no collision is still True due to inversion
|
130 |
-
ret = ret | upd
|
131 |
-
|
132 |
-
return ~ret # Do the inversion
|
133 |
-
|
134 |
-
|
135 |
-
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
|
136 |
-
|
137 |
-
|
138 |
-
def scale_tensor(
|
139 |
-
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
|
140 |
-
):
|
141 |
-
if inp_scale is None:
|
142 |
-
inp_scale = (0, 1)
|
143 |
-
if tgt_scale is None:
|
144 |
-
tgt_scale = (0, 1)
|
145 |
-
if isinstance(tgt_scale, Tensor):
|
146 |
-
assert dat.shape[-1] == tgt_scale.shape[-1]
|
147 |
-
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
|
148 |
-
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
|
149 |
-
return dat
|
150 |
-
|
151 |
-
|
152 |
-
def dilate_fill(img, mask, iterations=10):
|
153 |
-
oldMask = mask.float()
|
154 |
-
oldImg = img
|
155 |
-
|
156 |
-
mask_kernel = torch.ones(
|
157 |
-
(1, 1, 3, 3),
|
158 |
-
dtype=oldMask.dtype,
|
159 |
-
device=oldMask.device,
|
160 |
-
)
|
161 |
-
|
162 |
-
for i in range(iterations):
|
163 |
-
newMask = torch.nn.functional.max_pool2d(oldMask, 3, 1, 1)
|
164 |
-
|
165 |
-
# Fill the extension with mean color of old valid regions
|
166 |
-
img_unfold = F.unfold(oldImg, (3, 3)).view(1, 3, 3 * 3, -1)
|
167 |
-
mask_unfold = F.unfold(oldMask, (3, 3)).view(1, 1, 3 * 3, -1)
|
168 |
-
new_mask_unfold = F.unfold(newMask, (3, 3)).view(1, 1, 3 * 3, -1)
|
169 |
-
|
170 |
-
# Average color of the valid region
|
171 |
-
mean_color = (img_unfold.sum(dim=2) / mask_unfold.sum(dim=2).clip(1)).unsqueeze(
|
172 |
-
2
|
173 |
-
)
|
174 |
-
# Extend it to the new region
|
175 |
-
fill_color = (mean_color * new_mask_unfold).view(1, 3 * 3 * 3, -1)
|
176 |
-
|
177 |
-
mask_conv = F.conv2d(
|
178 |
-
newMask, mask_kernel, padding=1
|
179 |
-
) # Get the sum for each kernel patch
|
180 |
-
newImg = F.fold(
|
181 |
-
fill_color, (img.shape[-2], img.shape[-1]), (3, 3)
|
182 |
-
) / mask_conv.clamp(1)
|
183 |
-
|
184 |
-
diffMask = newMask - oldMask
|
185 |
-
|
186 |
-
oldMask = newMask
|
187 |
-
oldImg = torch.lerp(oldImg, newImg, diffMask)
|
188 |
-
|
189 |
-
return oldImg
|
190 |
-
|
191 |
-
|
192 |
-
def float32_to_uint8_np(
|
193 |
-
x: Float[np.ndarray, "*B H W C"],
|
194 |
-
dither: bool = True,
|
195 |
-
dither_mask: Optional[Float[np.ndarray, "*B H W C"]] = None,
|
196 |
-
dither_strength: float = 1.0,
|
197 |
-
) -> Int[np.ndarray, "*B H W C"]:
|
198 |
-
if dither:
|
199 |
-
dither = (
|
200 |
-
dither_strength * np.random.rand(*x[..., :1].shape).astype(np.float32) - 0.5
|
201 |
-
)
|
202 |
-
if dither_mask is not None:
|
203 |
-
dither = dither * dither_mask
|
204 |
-
return np.clip(np.floor((256.0 * x + dither)), 0, 255).astype(np.uint8)
|
205 |
-
return np.clip(np.floor((256.0 * x)), 0, 255).astype(torch.uint8)
|
206 |
-
|
207 |
-
|
208 |
-
def convert_data(data):
|
209 |
-
if data is None:
|
210 |
-
return None
|
211 |
-
elif isinstance(data, np.ndarray):
|
212 |
-
return data
|
213 |
-
elif isinstance(data, torch.Tensor):
|
214 |
-
if data.dtype in [torch.float16, torch.bfloat16]:
|
215 |
-
data = data.float()
|
216 |
-
return data.detach().cpu().numpy()
|
217 |
-
elif isinstance(data, list):
|
218 |
-
return [convert_data(d) for d in data]
|
219 |
-
elif isinstance(data, dict):
|
220 |
-
return {k: convert_data(v) for k, v in data.items()}
|
221 |
-
else:
|
222 |
-
raise TypeError(
|
223 |
-
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
|
224 |
-
type(data),
|
225 |
-
)
|
226 |
-
|
227 |
-
|
228 |
-
class ImageProcessor:
|
229 |
-
def convert_and_resize(
|
230 |
-
self,
|
231 |
-
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
232 |
-
size: int,
|
233 |
-
):
|
234 |
-
if isinstance(image, PIL.Image.Image):
|
235 |
-
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
|
236 |
-
elif isinstance(image, np.ndarray):
|
237 |
-
if image.dtype == np.uint8:
|
238 |
-
image = torch.from_numpy(image.astype(np.float32) / 255.0)
|
239 |
-
else:
|
240 |
-
image = torch.from_numpy(image)
|
241 |
-
elif isinstance(image, torch.Tensor):
|
242 |
-
pass
|
243 |
-
|
244 |
-
batched = image.ndim == 4
|
245 |
-
|
246 |
-
if not batched:
|
247 |
-
image = image[None, ...]
|
248 |
-
image = F.interpolate(
|
249 |
-
image.permute(0, 3, 1, 2),
|
250 |
-
(size, size),
|
251 |
-
mode="bilinear",
|
252 |
-
align_corners=False,
|
253 |
-
antialias=True,
|
254 |
-
).permute(0, 2, 3, 1)
|
255 |
-
if not batched:
|
256 |
-
image = image[0]
|
257 |
-
return image
|
258 |
-
|
259 |
-
def __call__(
|
260 |
-
self,
|
261 |
-
image: Union[
|
262 |
-
PIL.Image.Image,
|
263 |
-
np.ndarray,
|
264 |
-
torch.FloatTensor,
|
265 |
-
List[PIL.Image.Image],
|
266 |
-
List[np.ndarray],
|
267 |
-
List[torch.FloatTensor],
|
268 |
-
],
|
269 |
-
size: int,
|
270 |
-
) -> Any:
|
271 |
-
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
|
272 |
-
image = self.convert_and_resize(image, size)
|
273 |
-
else:
|
274 |
-
if not isinstance(image, list):
|
275 |
-
image = [image]
|
276 |
-
image = [self.convert_and_resize(im, size) for im in image]
|
277 |
-
image = torch.stack(image, dim=0)
|
278 |
-
return image
|
279 |
-
|
280 |
-
|
281 |
-
def get_intrinsic_from_fov(fov, H, W, bs=-1):
|
282 |
-
focal_length = 0.5 * H / np.tan(0.5 * fov)
|
283 |
-
intrinsic = np.identity(3, dtype=np.float32)
|
284 |
-
intrinsic[0, 0] = focal_length
|
285 |
-
intrinsic[1, 1] = focal_length
|
286 |
-
intrinsic[0, 2] = W / 2.0
|
287 |
-
intrinsic[1, 2] = H / 2.0
|
288 |
-
|
289 |
-
if bs > 0:
|
290 |
-
intrinsic = intrinsic[None].repeat(bs, axis=0)
|
291 |
-
|
292 |
-
return torch.from_numpy(intrinsic)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/sf3d_config.yaml
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
onfig.yaml
|
|
|
|
sf3d/sf3d_sf3d_box_uv_unwrap.py
DELETED
@@ -1,610 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import Tuple
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from jaxtyping import Float, Integer
|
7 |
-
from torch import Tensor
|
8 |
-
|
9 |
-
from sf3d.models.utils import dot, triangle_intersection_2d
|
10 |
-
|
11 |
-
|
12 |
-
def _box_assign_vertex_to_cube_face(
|
13 |
-
vertex_positions: Float[Tensor, "Nv 3"],
|
14 |
-
vertex_normals: Float[Tensor, "Nv 3"],
|
15 |
-
triangle_idxs: Integer[Tensor, "Nf 3"],
|
16 |
-
bbox: Float[Tensor, "2 3"],
|
17 |
-
) -> Tuple[Float[Tensor, "Nf 3 2"], Integer[Tensor, "Nf 3"]]:
|
18 |
-
# Test to not have a scaled model to fit the space better
|
19 |
-
# bbox_min = bbox[:1].mean(-1, keepdim=True)
|
20 |
-
# bbox_max = bbox[1:].mean(-1, keepdim=True)
|
21 |
-
# v_pos_normalized = (vertex_positions - bbox_min) / (bbox_max - bbox_min)
|
22 |
-
|
23 |
-
# Create a [0, 1] normalized vertex position
|
24 |
-
v_pos_normalized = (vertex_positions - bbox[:1]) / (bbox[1:] - bbox[:1])
|
25 |
-
# And to [-1, 1]
|
26 |
-
v_pos_normalized = 2.0 * v_pos_normalized - 1.0
|
27 |
-
|
28 |
-
# Get all vertex positions for each triangle
|
29 |
-
# Now how do we define to which face the triangle belongs? Mean face pos? Max vertex pos?
|
30 |
-
v0 = v_pos_normalized[triangle_idxs[:, 0]]
|
31 |
-
v1 = v_pos_normalized[triangle_idxs[:, 1]]
|
32 |
-
v2 = v_pos_normalized[triangle_idxs[:, 2]]
|
33 |
-
tri_stack = torch.stack([v0, v1, v2], dim=1)
|
34 |
-
|
35 |
-
vn0 = vertex_normals[triangle_idxs[:, 0]]
|
36 |
-
vn1 = vertex_normals[triangle_idxs[:, 1]]
|
37 |
-
vn2 = vertex_normals[triangle_idxs[:, 2]]
|
38 |
-
tri_stack_nrm = torch.stack([vn0, vn1, vn2], dim=1)
|
39 |
-
|
40 |
-
# Just average the normals per face
|
41 |
-
face_normal = F.normalize(torch.sum(tri_stack_nrm, 1), eps=1e-6, dim=-1)
|
42 |
-
|
43 |
-
# Now decide based on the face normal in which box map we project
|
44 |
-
# abs_x, abs_y, abs_z = tri_stack_nrm.abs().unbind(-1)
|
45 |
-
abs_x, abs_y, abs_z = tri_stack.abs().unbind(-1)
|
46 |
-
|
47 |
-
axis = torch.tensor(
|
48 |
-
[
|
49 |
-
[1, 0, 0], # 0
|
50 |
-
[-1, 0, 0], # 1
|
51 |
-
[0, 1, 0], # 2
|
52 |
-
[0, -1, 0], # 3
|
53 |
-
[0, 0, 1], # 4
|
54 |
-
[0, 0, -1], # 5
|
55 |
-
],
|
56 |
-
device=face_normal.device,
|
57 |
-
dtype=face_normal.dtype,
|
58 |
-
)
|
59 |
-
face_normal_axis = (face_normal[:, None] * axis[None]).sum(-1)
|
60 |
-
index = face_normal_axis.argmax(-1)
|
61 |
-
|
62 |
-
max_axis, uc, vc = (
|
63 |
-
torch.ones_like(abs_x),
|
64 |
-
torch.zeros_like(tri_stack[..., :1]),
|
65 |
-
torch.zeros_like(tri_stack[..., :1]),
|
66 |
-
)
|
67 |
-
mask_pos_x = index == 0
|
68 |
-
max_axis[mask_pos_x] = abs_x[mask_pos_x]
|
69 |
-
uc[mask_pos_x] = tri_stack[mask_pos_x][..., 1:2]
|
70 |
-
vc[mask_pos_x] = -tri_stack[mask_pos_x][..., -1:]
|
71 |
-
|
72 |
-
mask_neg_x = index == 1
|
73 |
-
max_axis[mask_neg_x] = abs_x[mask_neg_x]
|
74 |
-
uc[mask_neg_x] = tri_stack[mask_neg_x][..., 1:2]
|
75 |
-
vc[mask_neg_x] = -tri_stack[mask_neg_x][..., -1:]
|
76 |
-
|
77 |
-
mask_pos_y = index == 2
|
78 |
-
max_axis[mask_pos_y] = abs_y[mask_pos_y]
|
79 |
-
uc[mask_pos_y] = tri_stack[mask_pos_y][..., 0:1]
|
80 |
-
vc[mask_pos_y] = -tri_stack[mask_pos_y][..., -1:]
|
81 |
-
|
82 |
-
mask_neg_y = index == 3
|
83 |
-
max_axis[mask_neg_y] = abs_y[mask_neg_y]
|
84 |
-
uc[mask_neg_y] = tri_stack[mask_neg_y][..., 0:1]
|
85 |
-
vc[mask_neg_y] = -tri_stack[mask_neg_y][..., -1:]
|
86 |
-
|
87 |
-
mask_pos_z = index == 4
|
88 |
-
max_axis[mask_pos_z] = abs_z[mask_pos_z]
|
89 |
-
uc[mask_pos_z] = tri_stack[mask_pos_z][..., 0:1]
|
90 |
-
vc[mask_pos_z] = tri_stack[mask_pos_z][..., 1:2]
|
91 |
-
|
92 |
-
mask_neg_z = index == 5
|
93 |
-
max_axis[mask_neg_z] = abs_z[mask_neg_z]
|
94 |
-
uc[mask_neg_z] = tri_stack[mask_neg_z][..., 0:1]
|
95 |
-
vc[mask_neg_z] = -tri_stack[mask_neg_z][..., 1:2]
|
96 |
-
|
97 |
-
# UC from [-1, 1] to [0, 1]
|
98 |
-
max_dim_div = max_axis.max(dim=0, keepdims=True).values
|
99 |
-
uc = ((uc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
|
100 |
-
vc = ((vc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
|
101 |
-
|
102 |
-
uv = torch.stack([uc, vc], dim=-1)
|
103 |
-
|
104 |
-
return uv, index
|
105 |
-
|
106 |
-
|
107 |
-
def _assign_faces_uv_to_atlas_index(
|
108 |
-
vertex_positions: Float[Tensor, "Nv 3"],
|
109 |
-
triangle_idxs: Integer[Tensor, "Nf 3"],
|
110 |
-
face_uv: Float[Tensor, "Nf 3 2"],
|
111 |
-
face_index: Integer[Tensor, "Nf 3"],
|
112 |
-
) -> Integer[Tensor, "Nf"]: # noqa: F821
|
113 |
-
triangle_pos = vertex_positions[triangle_idxs]
|
114 |
-
# We need to do perform 3 overlap checks.
|
115 |
-
# The first set is placed in the upper two thirds of the UV atlas.
|
116 |
-
# Conceptually, this is the direct visible surfaces from the each cube side
|
117 |
-
# The second set is placed in the lower thirds and the left half of the UV atlas.
|
118 |
-
# This is the first set of occluded surfaces. They will also be saved in the projected fashion
|
119 |
-
# The third pass finds all non assigned faces. They will be placed in the bottom right half of
|
120 |
-
# the UV atlas in scattered fashion.
|
121 |
-
assign_idx = face_index.clone()
|
122 |
-
for overlap_step in range(3):
|
123 |
-
overlapping_indicator = torch.zeros_like(assign_idx, dtype=torch.bool)
|
124 |
-
for i in range(overlap_step * 6, (overlap_step + 1) * 6):
|
125 |
-
mask = assign_idx == i
|
126 |
-
if not mask.any():
|
127 |
-
continue
|
128 |
-
# Get all elements belonging to the projection face
|
129 |
-
uv_triangle = face_uv[mask]
|
130 |
-
cur_triangle_pos = triangle_pos[mask]
|
131 |
-
# Find the center of the uv coordinates
|
132 |
-
center_uv = uv_triangle.mean(dim=1, keepdim=True)
|
133 |
-
# And also the radius of the triangle
|
134 |
-
uv_triangle_radius = (uv_triangle - center_uv).norm(dim=-1).max(-1).values
|
135 |
-
|
136 |
-
potentially_overlapping_mask = (
|
137 |
-
# Find all close triangles
|
138 |
-
(center_uv[None, ...] - center_uv[:, None]).norm(dim=-1)
|
139 |
-
# Do not select the same element by offseting with an large valued identity matrix
|
140 |
-
+ torch.eye(
|
141 |
-
uv_triangle.shape[0],
|
142 |
-
device=uv_triangle.device,
|
143 |
-
dtype=uv_triangle.dtype,
|
144 |
-
).unsqueeze(-1)
|
145 |
-
* 1000
|
146 |
-
)
|
147 |
-
# Mark all potentially overlapping triangles to reduce the number of triangle intersection tests
|
148 |
-
potentially_overlapping_mask = (
|
149 |
-
potentially_overlapping_mask
|
150 |
-
<= (uv_triangle_radius.view(-1, 1, 1) * 3.0)
|
151 |
-
).squeeze(-1)
|
152 |
-
overlap_coords = torch.stack(torch.where(potentially_overlapping_mask), -1)
|
153 |
-
|
154 |
-
# Only unique triangles (A|B and B|A should be the same)
|
155 |
-
f = torch.min(overlap_coords, dim=-1).values
|
156 |
-
s = torch.max(overlap_coords, dim=-1).values
|
157 |
-
overlap_coords = torch.unique(torch.stack([f, s], dim=1), dim=0)
|
158 |
-
first, second = overlap_coords.unbind(-1)
|
159 |
-
|
160 |
-
# Get the triangles
|
161 |
-
tri_1 = uv_triangle[first]
|
162 |
-
tri_2 = uv_triangle[second]
|
163 |
-
|
164 |
-
# Perform the actual set with the reduced number of potentially overlapping triangles
|
165 |
-
its = triangle_intersection_2d(tri_1, tri_2, eps=1e-6)
|
166 |
-
|
167 |
-
# So we now need to detect which triangles are the occluded ones.
|
168 |
-
# We always assume the first to be the visible one (the others should move)
|
169 |
-
# In the previous step we use a lexigraphical sort to get the unique pairs
|
170 |
-
# In this we use a sort based on the orthographic projection
|
171 |
-
ax = 0 if i < 2 else 1 if i < 4 else 2
|
172 |
-
use_max = i % 2 == 1
|
173 |
-
|
174 |
-
tri1_c = cur_triangle_pos[first].mean(dim=1)
|
175 |
-
tri2_c = cur_triangle_pos[second].mean(dim=1)
|
176 |
-
|
177 |
-
mark_first = (
|
178 |
-
(tri1_c[..., ax] > tri2_c[..., ax])
|
179 |
-
if use_max
|
180 |
-
else (tri1_c[..., ax] < tri2_c[..., ax])
|
181 |
-
)
|
182 |
-
first[mark_first] = second[mark_first]
|
183 |
-
|
184 |
-
# Lastly the same index can be tested multiple times.
|
185 |
-
# If one marks it as overlapping we keep it marked as such.
|
186 |
-
# We do this by testing if it has been marked at least once.
|
187 |
-
unique_idx, rev_idx = torch.unique(first, return_inverse=True)
|
188 |
-
|
189 |
-
add = torch.zeros_like(unique_idx, dtype=torch.float32)
|
190 |
-
add.index_add_(0, rev_idx, its.float())
|
191 |
-
its_mask = add > 0
|
192 |
-
|
193 |
-
# And fill it in the overlapping indicator
|
194 |
-
idx = torch.where(mask)[0][unique_idx]
|
195 |
-
overlapping_indicator[idx] = its_mask
|
196 |
-
|
197 |
-
# Move the index to the overlap regions (shift by 6)
|
198 |
-
assign_idx[overlapping_indicator] += 6
|
199 |
-
|
200 |
-
# We do not care about the correct face placement after the first 2 slices
|
201 |
-
max_idx = 6 * 2
|
202 |
-
return assign_idx.clamp(0, max_idx)
|
203 |
-
|
204 |
-
|
205 |
-
def _find_slice_offset_and_scale(
|
206 |
-
index: Integer[Tensor, "Nf"], # noqa: F821
|
207 |
-
) -> Tuple[
|
208 |
-
Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"] # noqa: F821
|
209 |
-
]: # noqa: F821
|
210 |
-
# 6 due to the 6 cube faces
|
211 |
-
off = 1 / 3
|
212 |
-
dupl_off = 1 / 6
|
213 |
-
|
214 |
-
# Here, we need to decide how to pack the textures in the case of overlap
|
215 |
-
def x_offset_calc(x, i):
|
216 |
-
offset_calc = i // 6
|
217 |
-
# Initial coordinates - just 3x2 grid
|
218 |
-
if offset_calc == 0:
|
219 |
-
return off * x
|
220 |
-
else:
|
221 |
-
# Smaller 3x2 grid plus eventual shift to right for
|
222 |
-
# second overlap
|
223 |
-
return dupl_off * x + min(offset_calc - 1, 1) * 0.5
|
224 |
-
|
225 |
-
def y_offset_calc(x, i):
|
226 |
-
offset_calc = i // 6
|
227 |
-
# Initial coordinates - just a 3x2 grid
|
228 |
-
if offset_calc == 0:
|
229 |
-
return off * x
|
230 |
-
else:
|
231 |
-
# Smaller coordinates in the lowest row
|
232 |
-
return dupl_off * x + off * 2
|
233 |
-
|
234 |
-
offset_x = torch.zeros_like(index, dtype=torch.float32)
|
235 |
-
offset_y = torch.zeros_like(index, dtype=torch.float32)
|
236 |
-
offset_x_vals = [0, 1, 2, 0, 1, 2]
|
237 |
-
offset_y_vals = [0, 0, 0, 1, 1, 1]
|
238 |
-
for i in range(index.max().item() + 1):
|
239 |
-
mask = index == i
|
240 |
-
if not mask.any():
|
241 |
-
continue
|
242 |
-
offset_x[mask] = x_offset_calc(offset_x_vals[i % 6], i)
|
243 |
-
offset_y[mask] = y_offset_calc(offset_y_vals[i % 6], i)
|
244 |
-
|
245 |
-
div_x = torch.full_like(index, 6 // 2, dtype=torch.float32)
|
246 |
-
# All overlap elements are saved in half scale
|
247 |
-
div_x[index >= 6] = 6
|
248 |
-
div_y = div_x.clone() # Same for y
|
249 |
-
# Except for the random overlaps
|
250 |
-
div_x[index >= 12] = 2
|
251 |
-
# But the random overlaps are saved in a large block in the lower thirds
|
252 |
-
div_y[index >= 12] = 3
|
253 |
-
|
254 |
-
return offset_x, offset_y, div_x, div_y
|
255 |
-
|
256 |
-
|
257 |
-
def rotation_flip_matrix_2d(
|
258 |
-
rad: float, flip_x: bool = False, flip_y: bool = False
|
259 |
-
) -> Float[Tensor, "2 2"]:
|
260 |
-
cos = math.cos(rad)
|
261 |
-
sin = math.sin(rad)
|
262 |
-
rot_mat = torch.tensor([[cos, -sin], [sin, cos]], dtype=torch.float32)
|
263 |
-
flip_mat = torch.tensor(
|
264 |
-
[
|
265 |
-
[-1 if flip_x else 1, 0],
|
266 |
-
[0, -1 if flip_y else 1],
|
267 |
-
],
|
268 |
-
dtype=torch.float32,
|
269 |
-
)
|
270 |
-
|
271 |
-
return flip_mat @ rot_mat
|
272 |
-
|
273 |
-
|
274 |
-
def calculate_tangents(
|
275 |
-
vertex_positions: Float[Tensor, "Nv 3"],
|
276 |
-
vertex_normals: Float[Tensor, "Nv 3"],
|
277 |
-
triangle_idxs: Integer[Tensor, "Nf 3"],
|
278 |
-
face_uv: Float[Tensor, "Nf 3 2"],
|
279 |
-
) -> Float[Tensor, "Nf 3 4"]: # noqa: F821
|
280 |
-
vn_idx = [None] * 3
|
281 |
-
pos = [None] * 3
|
282 |
-
tex = face_uv.unbind(1)
|
283 |
-
for i in range(0, 3):
|
284 |
-
pos[i] = vertex_positions[triangle_idxs[:, i]]
|
285 |
-
# t_nrm_idx is always the same as t_pos_idx
|
286 |
-
vn_idx[i] = triangle_idxs[:, i]
|
287 |
-
|
288 |
-
tangents = torch.zeros_like(vertex_normals)
|
289 |
-
tansum = torch.zeros_like(vertex_normals)
|
290 |
-
|
291 |
-
# Compute tangent space for each triangle
|
292 |
-
duv1 = tex[1] - tex[0]
|
293 |
-
duv2 = tex[2] - tex[0]
|
294 |
-
dpos1 = pos[1] - pos[0]
|
295 |
-
dpos2 = pos[2] - pos[0]
|
296 |
-
|
297 |
-
tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]
|
298 |
-
|
299 |
-
denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]
|
300 |
-
|
301 |
-
# Avoid division by zero for degenerated texture coordinates
|
302 |
-
denom_safe = denom.clip(1e-6)
|
303 |
-
tang = tng_nom / denom_safe
|
304 |
-
|
305 |
-
# Update all 3 vertices
|
306 |
-
for i in range(0, 3):
|
307 |
-
idx = vn_idx[i][:, None].repeat(1, 3)
|
308 |
-
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
|
309 |
-
tansum.scatter_add_(
|
310 |
-
0, idx, torch.ones_like(tang)
|
311 |
-
) # tansum[n_i] = tansum[n_i] + 1
|
312 |
-
# Also normalize it. Here we do not normalize the individual triangles first so larger area
|
313 |
-
# triangles influence the tangent space more
|
314 |
-
tangents = tangents / tansum
|
315 |
-
|
316 |
-
# Normalize and make sure tangent is perpendicular to normal
|
317 |
-
tangents = F.normalize(tangents, dim=1)
|
318 |
-
tangents = F.normalize(tangents - dot(tangents, vertex_normals) * vertex_normals)
|
319 |
-
|
320 |
-
return tangents
|
321 |
-
|
322 |
-
|
323 |
-
def _rotate_uv_slices_consistent_space(
|
324 |
-
vertex_positions: Float[Tensor, "Nv 3"],
|
325 |
-
vertex_normals: Float[Tensor, "Nv 3"],
|
326 |
-
triangle_idxs: Integer[Tensor, "Nf 3"],
|
327 |
-
uv: Float[Tensor, "Nf 3 2"],
|
328 |
-
index: Integer[Tensor, "Nf"], # noqa: F821
|
329 |
-
):
|
330 |
-
tangents = calculate_tangents(vertex_positions, vertex_normals, triangle_idxs, uv)
|
331 |
-
pos_stack = torch.stack(
|
332 |
-
[
|
333 |
-
-vertex_positions[..., 1],
|
334 |
-
vertex_positions[..., 0],
|
335 |
-
torch.zeros_like(vertex_positions[..., 0]),
|
336 |
-
],
|
337 |
-
dim=-1,
|
338 |
-
)
|
339 |
-
expected_tangents = F.normalize(
|
340 |
-
torch.linalg.cross(
|
341 |
-
vertex_normals, torch.linalg.cross(pos_stack, vertex_normals)
|
342 |
-
),
|
343 |
-
-1,
|
344 |
-
)
|
345 |
-
|
346 |
-
actual_tangents = tangents[triangle_idxs]
|
347 |
-
expected_tangents = expected_tangents[triangle_idxs]
|
348 |
-
|
349 |
-
def rotation_matrix_2d(theta):
|
350 |
-
c, s = torch.cos(theta), torch.sin(theta)
|
351 |
-
return torch.tensor([[c, -s], [s, c]])
|
352 |
-
|
353 |
-
# Now find the rotation
|
354 |
-
index_mod = index % 6 # Shouldn't happen. Just for safety
|
355 |
-
for i in range(6):
|
356 |
-
mask = index_mod == i
|
357 |
-
if not mask.any():
|
358 |
-
continue
|
359 |
-
|
360 |
-
actual_mean_tangent = actual_tangents[mask].mean(dim=(0, 1))
|
361 |
-
expected_mean_tangent = expected_tangents[mask].mean(dim=(0, 1))
|
362 |
-
|
363 |
-
dot_product = torch.dot(actual_mean_tangent, expected_mean_tangent)
|
364 |
-
cross_product = (
|
365 |
-
actual_mean_tangent[0] * expected_mean_tangent[1]
|
366 |
-
- actual_mean_tangent[1] * expected_mean_tangent[0]
|
367 |
-
)
|
368 |
-
angle = torch.atan2(cross_product, dot_product)
|
369 |
-
|
370 |
-
rot_matrix = rotation_matrix_2d(angle).to(mask.device)
|
371 |
-
# Center the uv coordinate to be in the range of -1 to 1 and 0 centered
|
372 |
-
uv_cur = uv[mask] * 2 - 1 # Center it first
|
373 |
-
# Rotate it
|
374 |
-
uv[mask] = torch.einsum("ij,nfj->nfi", rot_matrix, uv_cur)
|
375 |
-
|
376 |
-
# Rescale uv[mask] to be within the 0-1 range
|
377 |
-
uv[mask] = (uv[mask] - uv[mask].min()) / (uv[mask].max() - uv[mask].min())
|
378 |
-
|
379 |
-
return uv
|
380 |
-
|
381 |
-
|
382 |
-
def _handle_slice_uvs(
|
383 |
-
uv: Float[Tensor, "Nf 3 2"],
|
384 |
-
index: Integer[Tensor, "Nf"], # noqa: F821
|
385 |
-
island_padding: float,
|
386 |
-
max_index: int = 6 * 2,
|
387 |
-
) -> Float[Tensor, "Nf 3 2"]: # noqa: F821
|
388 |
-
uc, vc = uv.unbind(-1)
|
389 |
-
|
390 |
-
# Get the second slice (The first overlap)
|
391 |
-
index_filter = [index == i for i in range(6, max_index)]
|
392 |
-
|
393 |
-
# Normalize them to always fully fill the atlas patch
|
394 |
-
for i, fi in enumerate(index_filter):
|
395 |
-
if fi.sum() > 0:
|
396 |
-
# Scale the slice but only up to a factor of 2
|
397 |
-
# This keeps the texture resolution with the first slice in line (Half space in UV)
|
398 |
-
uc[fi] = (uc[fi] - uc[fi].min()) / (uc[fi].max() - uc[fi].min()).clip(0.5)
|
399 |
-
vc[fi] = (vc[fi] - vc[fi].min()) / (vc[fi].max() - vc[fi].min()).clip(0.5)
|
400 |
-
|
401 |
-
uc_padded = (uc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
|
402 |
-
vc_padded = (vc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
|
403 |
-
|
404 |
-
return torch.stack([uc_padded, vc_padded], dim=-1)
|
405 |
-
|
406 |
-
|
407 |
-
def _handle_remaining_uvs(
|
408 |
-
uv: Float[Tensor, "Nf 3 2"],
|
409 |
-
index: Integer[Tensor, "Nf"], # noqa: F821
|
410 |
-
island_padding: float,
|
411 |
-
) -> Float[Tensor, "Nf 3 2"]:
|
412 |
-
uc, vc = uv.unbind(-1)
|
413 |
-
# Get all remaining elements
|
414 |
-
remaining_filter = index >= 6 * 2
|
415 |
-
squares_left = remaining_filter.sum()
|
416 |
-
|
417 |
-
if squares_left == 0:
|
418 |
-
return uv
|
419 |
-
|
420 |
-
uc = uc[remaining_filter]
|
421 |
-
vc = vc[remaining_filter]
|
422 |
-
|
423 |
-
# Or remaining triangles are distributed in a rectangle
|
424 |
-
# The rectangle takes 0.5 of the entire uv space in width and 1/3 in height
|
425 |
-
ratio = 0.5 * (1 / 3) # 1.5
|
426 |
-
# sqrt(744/(0.5*(1/3)))
|
427 |
-
|
428 |
-
mult = math.sqrt(squares_left / ratio)
|
429 |
-
num_square_width = int(math.ceil(0.5 * mult))
|
430 |
-
num_square_height = int(math.ceil(squares_left / num_square_width))
|
431 |
-
|
432 |
-
width = 1 / num_square_width
|
433 |
-
height = 1 / num_square_height
|
434 |
-
|
435 |
-
# The idea is again to keep the texture resolution consistent with the first slice
|
436 |
-
# This only occupys half the region in the texture chart but the scaling on the squares
|
437 |
-
# assumes full coverage.
|
438 |
-
clip_val = min(width, height) * 1.5
|
439 |
-
# Now normalize the UVs with taking into account the maximum scaling
|
440 |
-
uc = (uc - uc.min(dim=1, keepdim=True).values) / (
|
441 |
-
uc.amax(dim=1, keepdim=True) - uc.amin(dim=1, keepdim=True)
|
442 |
-
).clip(clip_val)
|
443 |
-
vc = (vc - vc.min(dim=1, keepdim=True).values) / (
|
444 |
-
vc.amax(dim=1, keepdim=True) - vc.amin(dim=1, keepdim=True)
|
445 |
-
).clip(clip_val)
|
446 |
-
# Add a small padding
|
447 |
-
uc = (
|
448 |
-
uc * (1 - island_padding * num_square_width * 0.5)
|
449 |
-
+ island_padding * num_square_width * 0.25
|
450 |
-
).clip(0, 1)
|
451 |
-
vc = (
|
452 |
-
vc * (1 - island_padding * num_square_height * 0.5)
|
453 |
-
+ island_padding * num_square_height * 0.25
|
454 |
-
).clip(0, 1)
|
455 |
-
|
456 |
-
uc = uc * width
|
457 |
-
vc = vc * height
|
458 |
-
|
459 |
-
# And calculate offsets for each element
|
460 |
-
idx = torch.arange(uc.shape[0], device=uc.device, dtype=torch.int32)
|
461 |
-
x_idx = idx % num_square_width
|
462 |
-
y_idx = idx // num_square_width
|
463 |
-
# And move each triangle to its own spot
|
464 |
-
uc = uc + x_idx[:, None] * width
|
465 |
-
vc = vc + y_idx[:, None] * height
|
466 |
-
|
467 |
-
uc = (uc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
|
468 |
-
vc = (vc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
|
469 |
-
|
470 |
-
uv[remaining_filter] = torch.stack([uc, vc], dim=-1)
|
471 |
-
|
472 |
-
return uv
|
473 |
-
|
474 |
-
|
475 |
-
def _distribute_individual_uvs_in_atlas(
|
476 |
-
face_uv: Float[Tensor, "Nf 3 2"],
|
477 |
-
assigned_faces: Integer[Tensor, "Nf"], # noqa: F821
|
478 |
-
offset_x: Float[Tensor, "Nf"], # noqa: F821
|
479 |
-
offset_y: Float[Tensor, "Nf"], # noqa: F821
|
480 |
-
div_x: Float[Tensor, "Nf"], # noqa: F821
|
481 |
-
div_y: Float[Tensor, "Nf"], # noqa: F821
|
482 |
-
island_padding: float,
|
483 |
-
):
|
484 |
-
# Place the slice first
|
485 |
-
placed_uv = _handle_slice_uvs(face_uv, assigned_faces, island_padding)
|
486 |
-
# Then handle the remaining overlap elements
|
487 |
-
placed_uv = _handle_remaining_uvs(placed_uv, assigned_faces, island_padding)
|
488 |
-
|
489 |
-
uc, vc = placed_uv.unbind(-1)
|
490 |
-
uc = uc / div_x[:, None] + offset_x[:, None]
|
491 |
-
vc = vc / div_y[:, None] + offset_y[:, None]
|
492 |
-
|
493 |
-
uv = torch.stack([uc, vc], dim=-1).view(-1, 2)
|
494 |
-
|
495 |
-
return uv
|
496 |
-
|
497 |
-
|
498 |
-
def _get_unique_face_uv(
|
499 |
-
uv: Float[Tensor, "Nf 3 2"],
|
500 |
-
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
|
501 |
-
unique_uv, unique_idx = torch.unique(uv, return_inverse=True, dim=0)
|
502 |
-
# And add the face to uv index mapping
|
503 |
-
vtex_idx = unique_idx.view(-1, 3)
|
504 |
-
|
505 |
-
return unique_uv, vtex_idx
|
506 |
-
|
507 |
-
|
508 |
-
def _align_mesh_with_main_axis(
|
509 |
-
vertex_positions: Float[Tensor, "Nv 3"], vertex_normals: Float[Tensor, "Nv 3"]
|
510 |
-
) -> Tuple[Float[Tensor, "Nv 3"], Float[Tensor, "Nv 3"]]:
|
511 |
-
# Use pca to find the 2 main axis (third is derived by cross product)
|
512 |
-
# Set the random seed so it's repeatable
|
513 |
-
torch.manual_seed(0)
|
514 |
-
_, _, v = torch.pca_lowrank(vertex_positions, q=2)
|
515 |
-
main_axis, seconday_axis = v[:, 0], v[:, 1]
|
516 |
-
|
517 |
-
main_axis: Float[Tensor, "3"] = F.normalize(main_axis, eps=1e-6, dim=-1)
|
518 |
-
# Orthogonalize the second axis
|
519 |
-
seconday_axis: Float[Tensor, "3"] = F.normalize(
|
520 |
-
seconday_axis - dot(seconday_axis, main_axis) * main_axis, eps=1e-6, dim=-1
|
521 |
-
)
|
522 |
-
# Create perpendicular third axis
|
523 |
-
third_axis: Float[Tensor, "3"] = F.normalize(
|
524 |
-
torch.cross(main_axis, seconday_axis), dim=-1, eps=1e-6
|
525 |
-
)
|
526 |
-
|
527 |
-
# Check to which canonical axis each aligns
|
528 |
-
main_axis_max_idx = main_axis.abs().argmax().item()
|
529 |
-
seconday_axis_max_idx = seconday_axis.abs().argmax().item()
|
530 |
-
third_axis_max_idx = third_axis.abs().argmax().item()
|
531 |
-
|
532 |
-
# Now sort the axes based on the argmax so they align with thecanonoical axes
|
533 |
-
# If two axes have the same argmax move one of them
|
534 |
-
all_possible_axis = {0, 1, 2}
|
535 |
-
cur_index = 1
|
536 |
-
while len(set([main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx])) != 3:
|
537 |
-
# Find missing axis
|
538 |
-
missing_axis = all_possible_axis - set(
|
539 |
-
[main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx]
|
540 |
-
)
|
541 |
-
missing_axis = missing_axis.pop()
|
542 |
-
# Just assign it to third axis as it had the smallest contribution to the
|
543 |
-
# overall shape
|
544 |
-
if cur_index == 1:
|
545 |
-
third_axis_max_idx = missing_axis
|
546 |
-
elif cur_index == 2:
|
547 |
-
seconday_axis_max_idx = missing_axis
|
548 |
-
else:
|
549 |
-
raise ValueError("Could not find 3 unique axis")
|
550 |
-
cur_index += 1
|
551 |
-
|
552 |
-
if len({main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx}) != 3:
|
553 |
-
raise ValueError("Could not find 3 unique axis")
|
554 |
-
|
555 |
-
axes = [None] * 3
|
556 |
-
axes[main_axis_max_idx] = main_axis
|
557 |
-
axes[seconday_axis_max_idx] = seconday_axis
|
558 |
-
axes[third_axis_max_idx] = third_axis
|
559 |
-
# Create rotation matrix from the individual axes
|
560 |
-
rot_mat = torch.stack(axes, dim=1).T
|
561 |
-
|
562 |
-
# Now rotate the vertex positions and vertex normals so the mesh aligns with the main axis
|
563 |
-
vertex_positions = torch.einsum("ij,nj->ni", rot_mat, vertex_positions)
|
564 |
-
vertex_normals = torch.einsum("ij,nj->ni", rot_mat, vertex_normals)
|
565 |
-
|
566 |
-
return vertex_positions, vertex_normals
|
567 |
-
|
568 |
-
|
569 |
-
def box_projection_uv_unwrap(
|
570 |
-
vertex_positions: Float[Tensor, "Nv 3"],
|
571 |
-
vertex_normals: Float[Tensor, "Nv 3"],
|
572 |
-
triangle_idxs: Integer[Tensor, "Nf 3"],
|
573 |
-
island_padding: float,
|
574 |
-
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
|
575 |
-
# Align the mesh with main axis directions first
|
576 |
-
vertex_positions, vertex_normals = _align_mesh_with_main_axis(
|
577 |
-
vertex_positions, vertex_normals
|
578 |
-
)
|
579 |
-
|
580 |
-
bbox: Float[Tensor, "2 3"] = torch.stack(
|
581 |
-
[vertex_positions.min(dim=0).values, vertex_positions.max(dim=0).values], dim=0
|
582 |
-
)
|
583 |
-
# First decide in which cube face the triangle is placed
|
584 |
-
face_uv, face_index = _box_assign_vertex_to_cube_face(
|
585 |
-
vertex_positions, vertex_normals, triangle_idxs, bbox
|
586 |
-
)
|
587 |
-
|
588 |
-
# Rotate the UV islands in a way that they align with the radial z tangent space
|
589 |
-
face_uv = _rotate_uv_slices_consistent_space(
|
590 |
-
vertex_positions, vertex_normals, triangle_idxs, face_uv, face_index
|
591 |
-
)
|
592 |
-
|
593 |
-
# Then find where where the face is placed in the atlas.
|
594 |
-
# This has to detect potential overlaps
|
595 |
-
assigned_atlas_index = _assign_faces_uv_to_atlas_index(
|
596 |
-
vertex_positions, triangle_idxs, face_uv, face_index
|
597 |
-
)
|
598 |
-
|
599 |
-
# Then figure out the final place in the atlas based on the assignment
|
600 |
-
offset_x, offset_y, div_x, div_y = _find_slice_offset_and_scale(
|
601 |
-
assigned_atlas_index
|
602 |
-
)
|
603 |
-
|
604 |
-
# Next distribute the faces in the uv atlas
|
605 |
-
placed_uv = _distribute_individual_uvs_in_atlas(
|
606 |
-
face_uv, assigned_atlas_index, offset_x, offset_y, div_x, div_y, island_padding
|
607 |
-
)
|
608 |
-
|
609 |
-
# And get the unique per-triangle UV coordinates
|
610 |
-
return _get_unique_face_uv(placed_uv)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/sf3d_sf3d_system.py
DELETED
@@ -1,482 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from dataclasses import dataclass, field
|
3 |
-
from typing import Any, List, Optional, Tuple
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
import trimesh
|
9 |
-
from einops import rearrange
|
10 |
-
from huggingface_hub import hf_hub_download
|
11 |
-
from jaxtyping import Float
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
from PIL import Image
|
14 |
-
from safetensors.torch import load_model
|
15 |
-
from torch import Tensor
|
16 |
-
|
17 |
-
from sf3d.models.isosurface import MarchingTetrahedraHelper
|
18 |
-
from sf3d.models.mesh import Mesh
|
19 |
-
from sf3d.models.utils import (
|
20 |
-
BaseModule,
|
21 |
-
ImageProcessor,
|
22 |
-
convert_data,
|
23 |
-
dilate_fill,
|
24 |
-
dot,
|
25 |
-
find_class,
|
26 |
-
float32_to_uint8_np,
|
27 |
-
normalize,
|
28 |
-
scale_tensor,
|
29 |
-
)
|
30 |
-
from sf3d.utils import create_intrinsic_from_fov_deg, default_cond_c2w
|
31 |
-
|
32 |
-
from .texture_baker import TextureBaker
|
33 |
-
|
34 |
-
|
35 |
-
class SF3D(BaseModule):
|
36 |
-
@dataclass
|
37 |
-
class Config(BaseModule.Config):
|
38 |
-
cond_image_size: int
|
39 |
-
isosurface_resolution: int
|
40 |
-
isosurface_threshold: float = 10.0
|
41 |
-
radius: float = 1.0
|
42 |
-
background_color: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
|
43 |
-
default_fovy_deg: float = 40.0
|
44 |
-
default_distance: float = 1.6
|
45 |
-
|
46 |
-
camera_embedder_cls: str = ""
|
47 |
-
camera_embedder: dict = field(default_factory=dict)
|
48 |
-
|
49 |
-
image_tokenizer_cls: str = ""
|
50 |
-
image_tokenizer: dict = field(default_factory=dict)
|
51 |
-
|
52 |
-
tokenizer_cls: str = ""
|
53 |
-
tokenizer: dict = field(default_factory=dict)
|
54 |
-
|
55 |
-
backbone_cls: str = ""
|
56 |
-
backbone: dict = field(default_factory=dict)
|
57 |
-
|
58 |
-
post_processor_cls: str = ""
|
59 |
-
post_processor: dict = field(default_factory=dict)
|
60 |
-
|
61 |
-
decoder_cls: str = ""
|
62 |
-
decoder: dict = field(default_factory=dict)
|
63 |
-
|
64 |
-
image_estimator_cls: str = ""
|
65 |
-
image_estimator: dict = field(default_factory=dict)
|
66 |
-
|
67 |
-
global_estimator_cls: str = ""
|
68 |
-
global_estimator: dict = field(default_factory=dict)
|
69 |
-
|
70 |
-
cfg: Config
|
71 |
-
|
72 |
-
@classmethod
|
73 |
-
def from_pretrained(
|
74 |
-
cls, pretrained_model_name_or_path: str, config_name: str, weight_name: str
|
75 |
-
):
|
76 |
-
if os.path.isdir(pretrained_model_name_or_path):
|
77 |
-
config_path = os.path.join(pretrained_model_name_or_path, config_name)
|
78 |
-
weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
|
79 |
-
else:
|
80 |
-
config_path = hf_hub_download(
|
81 |
-
repo_id=pretrained_model_name_or_path, filename=config_name
|
82 |
-
)
|
83 |
-
weight_path = hf_hub_download(
|
84 |
-
repo_id=pretrained_model_name_or_path, filename=weight_name
|
85 |
-
)
|
86 |
-
|
87 |
-
cfg = OmegaConf.load(config_path)
|
88 |
-
OmegaConf.resolve(cfg)
|
89 |
-
model = cls(cfg)
|
90 |
-
load_model(model, weight_path)
|
91 |
-
return model
|
92 |
-
|
93 |
-
@property
|
94 |
-
def device(self):
|
95 |
-
return next(self.parameters()).device
|
96 |
-
|
97 |
-
def configure(self):
|
98 |
-
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
|
99 |
-
self.cfg.image_tokenizer
|
100 |
-
)
|
101 |
-
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
|
102 |
-
self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
|
103 |
-
self.cfg.camera_embedder
|
104 |
-
)
|
105 |
-
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
|
106 |
-
self.post_processor = find_class(self.cfg.post_processor_cls)(
|
107 |
-
self.cfg.post_processor
|
108 |
-
)
|
109 |
-
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
|
110 |
-
self.image_estimator = find_class(self.cfg.image_estimator_cls)(
|
111 |
-
self.cfg.image_estimator
|
112 |
-
)
|
113 |
-
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
|
114 |
-
self.cfg.global_estimator
|
115 |
-
)
|
116 |
-
|
117 |
-
self.bbox: Float[Tensor, "2 3"]
|
118 |
-
self.register_buffer(
|
119 |
-
"bbox",
|
120 |
-
torch.as_tensor(
|
121 |
-
[
|
122 |
-
[-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
|
123 |
-
[self.cfg.radius, self.cfg.radius, self.cfg.radius],
|
124 |
-
],
|
125 |
-
dtype=torch.float32,
|
126 |
-
),
|
127 |
-
)
|
128 |
-
self.isosurface_helper = MarchingTetrahedraHelper(
|
129 |
-
self.cfg.isosurface_resolution,
|
130 |
-
os.path.join(
|
131 |
-
os.path.dirname(__file__),
|
132 |
-
"..",
|
133 |
-
"load",
|
134 |
-
"tets",
|
135 |
-
f"{self.cfg.isosurface_resolution}_tets.npz",
|
136 |
-
),
|
137 |
-
)
|
138 |
-
|
139 |
-
self.baker = TextureBaker()
|
140 |
-
self.image_processor = ImageProcessor()
|
141 |
-
|
142 |
-
def triplane_to_meshes(
|
143 |
-
self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
|
144 |
-
) -> list[Mesh]:
|
145 |
-
meshes = []
|
146 |
-
for i in range(triplanes.shape[0]):
|
147 |
-
triplane = triplanes[i]
|
148 |
-
grid_vertices = scale_tensor(
|
149 |
-
self.isosurface_helper.grid_vertices.to(triplanes.device),
|
150 |
-
self.isosurface_helper.points_range,
|
151 |
-
self.bbox,
|
152 |
-
)
|
153 |
-
|
154 |
-
values = self.query_triplane(grid_vertices, triplane)
|
155 |
-
decoded = self.decoder(values, include=["vertex_offset", "density"])
|
156 |
-
sdf = decoded["density"] - self.cfg.isosurface_threshold
|
157 |
-
|
158 |
-
deform = decoded["vertex_offset"].squeeze(0)
|
159 |
-
|
160 |
-
mesh: Mesh = self.isosurface_helper(
|
161 |
-
sdf.view(-1, 1), deform.view(-1, 3) if deform is not None else None
|
162 |
-
)
|
163 |
-
mesh.v_pos = scale_tensor(
|
164 |
-
mesh.v_pos, self.isosurface_helper.points_range, self.bbox
|
165 |
-
)
|
166 |
-
|
167 |
-
meshes.append(mesh)
|
168 |
-
|
169 |
-
return meshes
|
170 |
-
|
171 |
-
def query_triplane(
|
172 |
-
self,
|
173 |
-
positions: Float[Tensor, "*B N 3"],
|
174 |
-
triplanes: Float[Tensor, "*B 3 Cp Hp Wp"],
|
175 |
-
) -> Float[Tensor, "*B N F"]:
|
176 |
-
batched = positions.ndim == 3
|
177 |
-
if not batched:
|
178 |
-
# no batch dimension
|
179 |
-
triplanes = triplanes[None, ...]
|
180 |
-
positions = positions[None, ...]
|
181 |
-
assert triplanes.ndim == 5 and positions.ndim == 3
|
182 |
-
|
183 |
-
positions = scale_tensor(
|
184 |
-
positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
|
185 |
-
)
|
186 |
-
|
187 |
-
indices2D: Float[Tensor, "B 3 N 2"] = torch.stack(
|
188 |
-
(positions[..., [0, 1]], positions[..., [0, 2]], positions[..., [1, 2]]),
|
189 |
-
dim=-3,
|
190 |
-
).to(triplanes.dtype)
|
191 |
-
out: Float[Tensor, "B3 Cp 1 N"] = F.grid_sample(
|
192 |
-
rearrange(triplanes, "B Np Cp Hp Wp -> (B Np) Cp Hp Wp", Np=3).float(),
|
193 |
-
rearrange(indices2D, "B Np N Nd -> (B Np) () N Nd", Np=3).float(),
|
194 |
-
align_corners=True,
|
195 |
-
mode="bilinear",
|
196 |
-
)
|
197 |
-
out = rearrange(out, "(B Np) Cp () N -> B N (Np Cp)", Np=3)
|
198 |
-
|
199 |
-
return out
|
200 |
-
|
201 |
-
def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
|
202 |
-
# if batch[rgb_cond] is only one view, add a view dimension
|
203 |
-
if len(batch["rgb_cond"].shape) == 4:
|
204 |
-
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
|
205 |
-
batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
|
206 |
-
batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
|
207 |
-
batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
|
208 |
-
batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)
|
209 |
-
batch_size, n_input_views = batch["rgb_cond"].shape[:2]
|
210 |
-
|
211 |
-
camera_embeds: Optional[Float[Tensor, "B Nv Cc"]]
|
212 |
-
camera_embeds = self.camera_embedder(**batch)
|
213 |
-
|
214 |
-
input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.image_tokenizer(
|
215 |
-
rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
|
216 |
-
modulation_cond=camera_embeds,
|
217 |
-
)
|
218 |
-
|
219 |
-
input_image_tokens = rearrange(
|
220 |
-
input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
|
221 |
-
)
|
222 |
-
|
223 |
-
tokens: Float[Tensor, "B Ct Nt"] = self.tokenizer(batch_size)
|
224 |
-
|
225 |
-
tokens = self.backbone(
|
226 |
-
tokens,
|
227 |
-
encoder_hidden_states=input_image_tokens,
|
228 |
-
modulation_cond=None,
|
229 |
-
)
|
230 |
-
|
231 |
-
direct_codes = self.tokenizer.detokenize(tokens)
|
232 |
-
scene_codes = self.post_processor(direct_codes)
|
233 |
-
return scene_codes, direct_codes
|
234 |
-
|
235 |
-
def run_image(
|
236 |
-
self,
|
237 |
-
image: Image,
|
238 |
-
bake_resolution: int,
|
239 |
-
estimate_illumination: bool = False,
|
240 |
-
) -> Tuple[trimesh.Trimesh, dict[str, Any]]:
|
241 |
-
if image.mode != "RGBA":
|
242 |
-
raise ValueError("Image must be in RGBA mode")
|
243 |
-
img_cond = (
|
244 |
-
torch.from_numpy(
|
245 |
-
np.asarray(
|
246 |
-
image.resize((self.cfg.cond_image_size, self.cfg.cond_image_size))
|
247 |
-
).astype(np.float32)
|
248 |
-
/ 255.0
|
249 |
-
)
|
250 |
-
.float()
|
251 |
-
.clip(0, 1)
|
252 |
-
.to(self.device)
|
253 |
-
)
|
254 |
-
mask_cond = img_cond[:, :, -1:]
|
255 |
-
rgb_cond = torch.lerp(
|
256 |
-
torch.tensor(self.cfg.background_color, device=self.device)[None, None, :],
|
257 |
-
img_cond[:, :, :3],
|
258 |
-
mask_cond,
|
259 |
-
)
|
260 |
-
|
261 |
-
c2w_cond = default_cond_c2w(self.cfg.default_distance).to(self.device)
|
262 |
-
intrinsic, intrinsic_normed_cond = create_intrinsic_from_fov_deg(
|
263 |
-
self.cfg.default_fovy_deg,
|
264 |
-
self.cfg.cond_image_size,
|
265 |
-
self.cfg.cond_image_size,
|
266 |
-
)
|
267 |
-
|
268 |
-
batch = {
|
269 |
-
"rgb_cond": rgb_cond,
|
270 |
-
"mask_cond": mask_cond,
|
271 |
-
"c2w_cond": c2w_cond.unsqueeze(0),
|
272 |
-
"intrinsic_cond": intrinsic.to(self.device).unsqueeze(0),
|
273 |
-
"intrinsic_normed_cond": intrinsic_normed_cond.to(self.device).unsqueeze(0),
|
274 |
-
}
|
275 |
-
|
276 |
-
meshes, global_dict = self.generate_mesh(
|
277 |
-
batch, bake_resolution, estimate_illumination
|
278 |
-
)
|
279 |
-
return meshes[0], global_dict
|
280 |
-
|
281 |
-
def generate_mesh(
|
282 |
-
self,
|
283 |
-
batch,
|
284 |
-
bake_resolution: int,
|
285 |
-
estimate_illumination: bool = False,
|
286 |
-
) -> Tuple[List[trimesh.Trimesh], dict[str, Any]]:
|
287 |
-
batch["rgb_cond"] = self.image_processor(
|
288 |
-
batch["rgb_cond"], self.cfg.cond_image_size
|
289 |
-
)
|
290 |
-
batch["mask_cond"] = self.image_processor(
|
291 |
-
batch["mask_cond"], self.cfg.cond_image_size
|
292 |
-
)
|
293 |
-
scene_codes, non_postprocessed_codes = self.get_scene_codes(batch)
|
294 |
-
|
295 |
-
global_dict = {}
|
296 |
-
if self.image_estimator is not None:
|
297 |
-
global_dict.update(
|
298 |
-
self.image_estimator(batch["rgb_cond"] * batch["mask_cond"])
|
299 |
-
)
|
300 |
-
if self.global_estimator is not None and estimate_illumination:
|
301 |
-
global_dict.update(self.global_estimator(non_postprocessed_codes))
|
302 |
-
|
303 |
-
with torch.no_grad():
|
304 |
-
with torch.autocast(device_type="cuda", enabled=False):
|
305 |
-
meshes = self.triplane_to_meshes(scene_codes)
|
306 |
-
|
307 |
-
rets = []
|
308 |
-
for i, mesh in enumerate(meshes):
|
309 |
-
# Check for empty mesh
|
310 |
-
if mesh.v_pos.shape[0] == 0:
|
311 |
-
rets.append(trimesh.Trimesh())
|
312 |
-
continue
|
313 |
-
|
314 |
-
mesh.unwrap_uv()
|
315 |
-
|
316 |
-
# Build textures
|
317 |
-
rast = self.baker.rasterize(
|
318 |
-
mesh.v_tex, mesh.t_pos_idx, bake_resolution
|
319 |
-
)
|
320 |
-
bake_mask = self.baker.get_mask(rast)
|
321 |
-
|
322 |
-
pos_bake = self.baker.interpolate(
|
323 |
-
mesh.v_pos,
|
324 |
-
rast,
|
325 |
-
mesh.t_pos_idx,
|
326 |
-
mesh.v_tex,
|
327 |
-
)
|
328 |
-
gb_pos = pos_bake[bake_mask]
|
329 |
-
|
330 |
-
tri_query = self.query_triplane(gb_pos, scene_codes[i])[0]
|
331 |
-
decoded = self.decoder(
|
332 |
-
tri_query, exclude=["density", "vertex_offset"]
|
333 |
-
)
|
334 |
-
|
335 |
-
nrm = self.baker.interpolate(
|
336 |
-
mesh.v_nrm,
|
337 |
-
rast,
|
338 |
-
mesh.t_pos_idx,
|
339 |
-
mesh.v_tex,
|
340 |
-
)
|
341 |
-
gb_nrm = F.normalize(nrm[bake_mask], dim=-1)
|
342 |
-
decoded["normal"] = gb_nrm
|
343 |
-
|
344 |
-
# Check if any keys in global_dict start with decoded_
|
345 |
-
for k, v in global_dict.items():
|
346 |
-
if k.startswith("decoder_"):
|
347 |
-
decoded[k.replace("decoder_", "")] = v[i]
|
348 |
-
|
349 |
-
mat_out = {
|
350 |
-
"albedo": decoded["features"],
|
351 |
-
"roughness": decoded["roughness"],
|
352 |
-
"metallic": decoded["metallic"],
|
353 |
-
"normal": normalize(decoded["perturb_normal"]),
|
354 |
-
"bump": None,
|
355 |
-
}
|
356 |
-
|
357 |
-
for k, v in mat_out.items():
|
358 |
-
if v is None:
|
359 |
-
continue
|
360 |
-
if v.shape[0] == 1:
|
361 |
-
# Skip and directly add a single value
|
362 |
-
mat_out[k] = v[0]
|
363 |
-
else:
|
364 |
-
f = torch.zeros(
|
365 |
-
bake_resolution,
|
366 |
-
bake_resolution,
|
367 |
-
v.shape[-1],
|
368 |
-
dtype=v.dtype,
|
369 |
-
device=v.device,
|
370 |
-
)
|
371 |
-
if v.shape == f.shape:
|
372 |
-
continue
|
373 |
-
if k == "normal":
|
374 |
-
# Use un-normalized tangents here so that larger smaller tris
|
375 |
-
# Don't effect the tangents that much
|
376 |
-
tng = self.baker.interpolate(
|
377 |
-
mesh.v_tng,
|
378 |
-
rast,
|
379 |
-
mesh.t_pos_idx,
|
380 |
-
mesh.v_tex,
|
381 |
-
)
|
382 |
-
gb_tng = tng[bake_mask]
|
383 |
-
gb_tng = F.normalize(gb_tng, dim=-1)
|
384 |
-
gb_btng = F.normalize(
|
385 |
-
torch.cross(gb_tng, gb_nrm, dim=-1), dim=-1
|
386 |
-
)
|
387 |
-
normal = F.normalize(mat_out["normal"], dim=-1)
|
388 |
-
|
389 |
-
bump = torch.cat(
|
390 |
-
# Check if we have to flip some things
|
391 |
-
(
|
392 |
-
dot(normal, gb_tng),
|
393 |
-
dot(normal, gb_btng),
|
394 |
-
dot(normal, gb_nrm).clip(
|
395 |
-
0.3, 1
|
396 |
-
), # Never go below 0.3. This would indicate a flipped (or close to one) normal
|
397 |
-
),
|
398 |
-
-1,
|
399 |
-
)
|
400 |
-
bump = (bump * 0.5 + 0.5).clamp(0, 1)
|
401 |
-
|
402 |
-
f[bake_mask] = bump.view(-1, 3)
|
403 |
-
mat_out["bump"] = f
|
404 |
-
else:
|
405 |
-
f[bake_mask] = v.view(-1, v.shape[-1])
|
406 |
-
mat_out[k] = f
|
407 |
-
|
408 |
-
def uv_padding(arr):
|
409 |
-
if arr.ndim == 1:
|
410 |
-
return arr
|
411 |
-
return (
|
412 |
-
dilate_fill(
|
413 |
-
arr.permute(2, 0, 1)[None, ...],
|
414 |
-
bake_mask.unsqueeze(0).unsqueeze(0),
|
415 |
-
iterations=bake_resolution // 150,
|
416 |
-
)
|
417 |
-
.squeeze(0)
|
418 |
-
.permute(1, 2, 0)
|
419 |
-
)
|
420 |
-
|
421 |
-
verts_np = convert_data(mesh.v_pos)
|
422 |
-
faces = convert_data(mesh.t_pos_idx)
|
423 |
-
uvs = convert_data(mesh.v_tex)
|
424 |
-
|
425 |
-
basecolor_tex = Image.fromarray(
|
426 |
-
float32_to_uint8_np(convert_data(uv_padding(mat_out["albedo"])))
|
427 |
-
).convert("RGB")
|
428 |
-
basecolor_tex.format = "JPEG"
|
429 |
-
|
430 |
-
metallic = mat_out["metallic"].squeeze().cpu().item()
|
431 |
-
roughness = mat_out["roughness"].squeeze().cpu().item()
|
432 |
-
|
433 |
-
if "bump" in mat_out and mat_out["bump"] is not None:
|
434 |
-
bump_np = convert_data(uv_padding(mat_out["bump"]))
|
435 |
-
bump_up = np.ones_like(bump_np)
|
436 |
-
bump_up[..., :2] = 0.5
|
437 |
-
bump_up[..., 2:] = 1
|
438 |
-
bump_tex = Image.fromarray(
|
439 |
-
float32_to_uint8_np(
|
440 |
-
bump_np,
|
441 |
-
dither=True,
|
442 |
-
# Do not dither if something is perfectly flat
|
443 |
-
dither_mask=np.all(
|
444 |
-
bump_np == bump_up, axis=-1, keepdims=True
|
445 |
-
).astype(np.float32),
|
446 |
-
)
|
447 |
-
).convert("RGB")
|
448 |
-
bump_tex.format = (
|
449 |
-
"JPEG" # PNG would be better but the assets are larger
|
450 |
-
)
|
451 |
-
else:
|
452 |
-
bump_tex = None
|
453 |
-
|
454 |
-
material = trimesh.visual.material.PBRMaterial(
|
455 |
-
baseColorTexture=basecolor_tex,
|
456 |
-
roughnessFactor=roughness,
|
457 |
-
metallicFactor=metallic,
|
458 |
-
normalTexture=bump_tex,
|
459 |
-
)
|
460 |
-
|
461 |
-
tmesh = trimesh.Trimesh(
|
462 |
-
vertices=verts_np,
|
463 |
-
faces=faces,
|
464 |
-
visual=trimesh.visual.texture.TextureVisuals(
|
465 |
-
uv=uvs, material=material
|
466 |
-
),
|
467 |
-
)
|
468 |
-
rot = trimesh.transformations.rotation_matrix(
|
469 |
-
np.radians(-90), [1, 0, 0]
|
470 |
-
)
|
471 |
-
tmesh.apply_transform(rot)
|
472 |
-
tmesh.apply_transform(
|
473 |
-
trimesh.transformations.rotation_matrix(
|
474 |
-
np.radians(90), [0, 1, 0]
|
475 |
-
)
|
476 |
-
)
|
477 |
-
|
478 |
-
tmesh.invert()
|
479 |
-
|
480 |
-
rets.append(tmesh)
|
481 |
-
|
482 |
-
return rets, global_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/sf3d_sf3d_texture_baker.py
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import slangtorch
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from jaxtyping import Bool, Float
|
7 |
-
from torch import Tensor
|
8 |
-
|
9 |
-
|
10 |
-
class TextureBaker(nn.Module):
|
11 |
-
def __init__(self):
|
12 |
-
super().__init__()
|
13 |
-
self.baker = slangtorch.loadModule(
|
14 |
-
os.path.join(os.path.dirname(__file__), "texture_baker.slang")
|
15 |
-
)
|
16 |
-
|
17 |
-
def rasterize(
|
18 |
-
self,
|
19 |
-
uv: Float[Tensor, "Nv 2"],
|
20 |
-
face_indices: Float[Tensor, "Nf 3"],
|
21 |
-
bake_resolution: int,
|
22 |
-
) -> Float[Tensor, "bake_resolution bake_resolution 4"]:
|
23 |
-
if not face_indices.is_cuda or not uv.is_cuda:
|
24 |
-
raise ValueError("All input tensors must be on cuda")
|
25 |
-
|
26 |
-
face_indices = face_indices.to(torch.int32)
|
27 |
-
uv = uv.to(torch.float32)
|
28 |
-
|
29 |
-
rast_result = torch.empty(
|
30 |
-
bake_resolution, bake_resolution, 4, device=uv.device, dtype=torch.float32
|
31 |
-
)
|
32 |
-
|
33 |
-
block_size = 16
|
34 |
-
grid_size = bake_resolution // block_size
|
35 |
-
self.baker.bake_uv(uv=uv, indices=face_indices, output=rast_result).launchRaw(
|
36 |
-
blockSize=(block_size, block_size, 1), gridSize=(grid_size, grid_size, 1)
|
37 |
-
)
|
38 |
-
|
39 |
-
return rast_result
|
40 |
-
|
41 |
-
def get_mask(
|
42 |
-
self, rast: Float[Tensor, "bake_resolution bake_resolution 4"]
|
43 |
-
) -> Bool[Tensor, "bake_resolution bake_resolution"]:
|
44 |
-
return rast[..., -1] >= 0
|
45 |
-
|
46 |
-
def interpolate(
|
47 |
-
self,
|
48 |
-
attr: Float[Tensor, "Nv 3"],
|
49 |
-
rast: Float[Tensor, "bake_resolution bake_resolution 4"],
|
50 |
-
face_indices: Float[Tensor, "Nf 3"],
|
51 |
-
uv: Float[Tensor, "Nv 2"],
|
52 |
-
) -> Float[Tensor, "bake_resolution bake_resolution 3"]:
|
53 |
-
# Make sure all input tensors are on torch
|
54 |
-
if not attr.is_cuda or not face_indices.is_cuda or not rast.is_cuda:
|
55 |
-
raise ValueError("All input tensors must be on cuda")
|
56 |
-
|
57 |
-
attr = attr.to(torch.float32)
|
58 |
-
face_indices = face_indices.to(torch.int32)
|
59 |
-
uv = uv.to(torch.float32)
|
60 |
-
|
61 |
-
pos_bake = torch.zeros(
|
62 |
-
rast.shape[0],
|
63 |
-
rast.shape[1],
|
64 |
-
3,
|
65 |
-
device=attr.device,
|
66 |
-
dtype=attr.dtype,
|
67 |
-
)
|
68 |
-
|
69 |
-
block_size = 16
|
70 |
-
grid_size = rast.shape[0] // block_size
|
71 |
-
self.baker.interpolate(
|
72 |
-
attr=attr, indices=face_indices, rast=rast, output=pos_bake
|
73 |
-
).launchRaw(
|
74 |
-
blockSize=(block_size, block_size, 1), gridSize=(grid_size, grid_size, 1)
|
75 |
-
)
|
76 |
-
|
77 |
-
return pos_bake
|
78 |
-
|
79 |
-
def forward(
|
80 |
-
self,
|
81 |
-
attr: Float[Tensor, "Nv 3"],
|
82 |
-
uv: Float[Tensor, "Nv 2"],
|
83 |
-
face_indices: Float[Tensor, "Nf 3"],
|
84 |
-
bake_resolution: int,
|
85 |
-
) -> Float[Tensor, "bake_resolution bake_resolution 3"]:
|
86 |
-
rast = self.rasterize(uv, face_indices, bake_resolution)
|
87 |
-
return self.interpolate(attr, rast, face_indices, uv)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/sf3d_sf3d_texture_baker.slang
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
// xy: 2D test position
|
2 |
-
// v1: vertex position 1
|
3 |
-
// v2: vertex position 2
|
4 |
-
// v3: vertex position 3
|
5 |
-
//
|
6 |
-
bool barycentric_coordinates(float2 xy, float2 v1, float2 v2, float2 v3, out float u, out float v, out float w)
|
7 |
-
{
|
8 |
-
// Return true if the point (x,y) is inside the triangle defined by the vertices v1, v2, v3.
|
9 |
-
// If the point is inside the triangle, the barycentric coordinates are stored in u, v, and w.
|
10 |
-
float2 v1v2 = v2 - v1;
|
11 |
-
float2 v1v3 = v3 - v1;
|
12 |
-
float2 xyv1 = xy - v1;
|
13 |
-
|
14 |
-
float d00 = dot(v1v2, v1v2);
|
15 |
-
float d01 = dot(v1v2, v1v3);
|
16 |
-
float d11 = dot(v1v3, v1v3);
|
17 |
-
float d20 = dot(xyv1, v1v2);
|
18 |
-
float d21 = dot(xyv1, v1v3);
|
19 |
-
|
20 |
-
float denom = d00 * d11 - d01 * d01;
|
21 |
-
v = (d11 * d20 - d01 * d21) / denom;
|
22 |
-
w = (d00 * d21 - d01 * d20) / denom;
|
23 |
-
u = 1.0 - v - w;
|
24 |
-
|
25 |
-
return (v >= 0.0) && (w >= 0.0) && (v + w <= 1.0);
|
26 |
-
}
|
27 |
-
|
28 |
-
[AutoPyBindCUDA]
|
29 |
-
[CUDAKernel]
|
30 |
-
void interpolate(
|
31 |
-
TensorView<float3> attr,
|
32 |
-
TensorView<int3> indices,
|
33 |
-
TensorView<float4> rast,
|
34 |
-
TensorView<float3> output)
|
35 |
-
{
|
36 |
-
// Interpolate the attr into output based on the rast result (barycentric coordinates, + triangle idx)
|
37 |
-
|
38 |
-
uint3 dispatch_id = cudaBlockIdx() * cudaBlockDim() + cudaThreadIdx();
|
39 |
-
|
40 |
-
if (dispatch_id.x > output.size(0) || dispatch_id.y > output.size(1))
|
41 |
-
return;
|
42 |
-
|
43 |
-
float4 barycentric = rast[dispatch_id.x, dispatch_id.y];
|
44 |
-
int triangle_idx = int(barycentric.w);
|
45 |
-
|
46 |
-
if (triangle_idx < 0) {
|
47 |
-
output[dispatch_id.x, dispatch_id.y] = float3(0.0, 0.0, 0.0);
|
48 |
-
return;
|
49 |
-
}
|
50 |
-
|
51 |
-
float3 v1 = attr[indices[triangle_idx].x];
|
52 |
-
float3 v2 = attr[indices[triangle_idx].y];
|
53 |
-
float3 v3 = attr[indices[triangle_idx].z];
|
54 |
-
|
55 |
-
output[dispatch_id.x, dispatch_id.y] = v1 * barycentric.x + v2 * barycentric.y + v3 * barycentric.z;
|
56 |
-
}
|
57 |
-
|
58 |
-
[AutoPyBindCUDA]
|
59 |
-
[CUDAKernel]
|
60 |
-
void bake_uv(
|
61 |
-
TensorView<float2> uv,
|
62 |
-
TensorView<int3> indices,
|
63 |
-
TensorView<float4> output)
|
64 |
-
{
|
65 |
-
uint3 dispatch_id = cudaBlockIdx() * cudaBlockDim() + cudaThreadIdx();
|
66 |
-
|
67 |
-
if (dispatch_id.y > output.size(0) || dispatch_id.x > output.size(1))
|
68 |
-
return;
|
69 |
-
|
70 |
-
// We index x,y but the orginal coords are HW. So swap them
|
71 |
-
float2 pixel_coord = float2(dispatch_id.y, dispatch_id.x);
|
72 |
-
// Normalize to [0, 1]
|
73 |
-
pixel_coord /= float2(output.size(1), output.size(0));
|
74 |
-
pixel_coord = clamp(pixel_coord, 0.0, 1.0);
|
75 |
-
// Flip x-axis
|
76 |
-
pixel_coord.y = 1 - pixel_coord.y;
|
77 |
-
|
78 |
-
for (int i = 0; i < indices.size(0); i++) {
|
79 |
-
float2 v1 = float2(uv[indices[i].x].x, uv[indices[i].x].y);
|
80 |
-
float2 v2 = float2(uv[indices[i].y].x, uv[indices[i].y].y);
|
81 |
-
float2 v3 = float2(uv[indices[i].z].x, uv[indices[i].z].y);
|
82 |
-
|
83 |
-
float u, v, w;
|
84 |
-
bool hit = barycentric_coordinates(pixel_coord, v1, v2, v3, u, v, w);
|
85 |
-
|
86 |
-
if (hit){
|
87 |
-
output[dispatch_id.x, dispatch_id.y] = float4(u, v, w, i);
|
88 |
-
return;
|
89 |
-
}
|
90 |
-
}
|
91 |
-
|
92 |
-
output[dispatch_id.x, dispatch_id.y] = float4(0.0, 0.0, 0.0, -1);
|
93 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sf3d/sf3d_sf3d_utils.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
from typing import Any
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import rembg
|
5 |
-
import torch
|
6 |
-
from PIL import Image
|
7 |
-
|
8 |
-
import sf3d.models.utils as sf3d_utils
|
9 |
-
|
10 |
-
|
11 |
-
def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int):
|
12 |
-
intrinsic = sf3d_utils.get_intrinsic_from_fov(
|
13 |
-
np.deg2rad(fov_deg),
|
14 |
-
H=cond_height,
|
15 |
-
W=cond_width,
|
16 |
-
)
|
17 |
-
intrinsic_normed_cond = intrinsic.clone()
|
18 |
-
intrinsic_normed_cond[..., 0, 2] /= cond_width
|
19 |
-
intrinsic_normed_cond[..., 1, 2] /= cond_height
|
20 |
-
intrinsic_normed_cond[..., 0, 0] /= cond_width
|
21 |
-
intrinsic_normed_cond[..., 1, 1] /= cond_height
|
22 |
-
|
23 |
-
return intrinsic, intrinsic_normed_cond
|
24 |
-
|
25 |
-
|
26 |
-
def default_cond_c2w(distance: float):
|
27 |
-
c2w_cond = torch.as_tensor(
|
28 |
-
[
|
29 |
-
[0, 0, 1, distance],
|
30 |
-
[1, 0, 0, 0],
|
31 |
-
[0, 1, 0, 0],
|
32 |
-
[0, 0, 0, 1],
|
33 |
-
]
|
34 |
-
).float()
|
35 |
-
return c2w_cond
|
36 |
-
|
37 |
-
|
38 |
-
def remove_background(
|
39 |
-
image: Image,
|
40 |
-
rembg_session: Any = None,
|
41 |
-
force: bool = False,
|
42 |
-
**rembg_kwargs,
|
43 |
-
) -> Image:
|
44 |
-
do_remove = True
|
45 |
-
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
46 |
-
do_remove = False
|
47 |
-
do_remove = do_remove or force
|
48 |
-
if do_remove:
|
49 |
-
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
50 |
-
return image
|
51 |
-
|
52 |
-
|
53 |
-
def resize_foreground(
|
54 |
-
image: Image,
|
55 |
-
ratio: float,
|
56 |
-
) -> Image:
|
57 |
-
image = np.array(image)
|
58 |
-
assert image.shape[-1] == 4
|
59 |
-
alpha = np.where(image[..., 3] > 0)
|
60 |
-
y1, y2, x1, x2 = (
|
61 |
-
alpha[0].min(),
|
62 |
-
alpha[0].max(),
|
63 |
-
alpha[1].min(),
|
64 |
-
alpha[1].max(),
|
65 |
-
)
|
66 |
-
# crop the foreground
|
67 |
-
fg = image[y1:y2, x1:x2]
|
68 |
-
# pad to square
|
69 |
-
size = max(fg.shape[0], fg.shape[1])
|
70 |
-
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
71 |
-
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
72 |
-
new_image = np.pad(
|
73 |
-
fg,
|
74 |
-
((ph0, ph1), (pw0, pw1), (0, 0)),
|
75 |
-
mode="constant",
|
76 |
-
constant_values=((0, 0), (0, 0), (0, 0)),
|
77 |
-
)
|
78 |
-
|
79 |
-
# compute padding according to the ratio
|
80 |
-
new_size = int(new_image.shape[0] / ratio)
|
81 |
-
# pad to size, double side
|
82 |
-
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
83 |
-
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
84 |
-
new_image = np.pad(
|
85 |
-
new_image,
|
86 |
-
((ph0, ph1), (pw0, pw1), (0, 0)),
|
87 |
-
mode="constant",
|
88 |
-
constant_values=((0, 0), (0, 0), (0, 0)),
|
89 |
-
)
|
90 |
-
new_image = Image.fromarray(new_image, mode="RGBA")
|
91 |
-
return new_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|