Upload 2 files
Browse files- app.py +214 -0
- requirements.txt +42 -0
app.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import ShapEPipeline, ShapEImg2ImgPipeline
|
| 4 |
+
from diffusers.utils import export_to_gif
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import HfApi, login
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import numpy as np
|
| 9 |
+
import gc
|
| 10 |
+
|
| 11 |
+
# Force CPU usage
|
| 12 |
+
device = "cpu"
|
| 13 |
+
torch.set_num_threads(4)
|
| 14 |
+
print(f"Using device: {device}")
|
| 15 |
+
|
| 16 |
+
def validate_token(token):
|
| 17 |
+
try:
|
| 18 |
+
login(token=token)
|
| 19 |
+
return True
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Token validation error: {str(e)}")
|
| 22 |
+
return False
|
| 23 |
+
|
| 24 |
+
def generate_3d_from_text(prompt, token, guidance_scale=7.0, export_format="obj", progress=gr.Progress()):
|
| 25 |
+
try:
|
| 26 |
+
if not validate_token(token):
|
| 27 |
+
return gr.update(value="Invalid Hugging Face token"), None, None
|
| 28 |
+
|
| 29 |
+
print(f"Starting generation: {prompt}")
|
| 30 |
+
progress(0.1, desc="Loading model...")
|
| 31 |
+
|
| 32 |
+
pipe = ShapEPipeline.from_pretrained(
|
| 33 |
+
"openai/shap-e",
|
| 34 |
+
torch_dtype=torch.float32,
|
| 35 |
+
token=token,
|
| 36 |
+
revision="main",
|
| 37 |
+
low_cpu_mem_usage=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
os.makedirs("outputs", exist_ok=True)
|
| 41 |
+
safe_prompt = "".join(x for x in prompt if x.isalnum() or x in (" ", "-", "_"))
|
| 42 |
+
base_filename = f"outputs/{safe_prompt}"
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
progress(0.3, desc="Creating 3D model...")
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
output = pipe(
|
| 48 |
+
prompt,
|
| 49 |
+
guidance_scale=min(guidance_scale, 10.0),
|
| 50 |
+
num_inference_steps=16
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
progress(0.5, desc="Creating GIF...")
|
| 54 |
+
gif_path = export_to_gif(output.images, f"{base_filename}.gif")
|
| 55 |
+
|
| 56 |
+
progress(0.7, desc="Creating 3D mesh...")
|
| 57 |
+
mesh_output = pipe(
|
| 58 |
+
prompt,
|
| 59 |
+
guidance_scale=min(guidance_scale, 10.0),
|
| 60 |
+
num_inference_steps=16,
|
| 61 |
+
output_type="mesh"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
progress(0.9, desc="Saving files...")
|
| 65 |
+
output_path = f"{base_filename}.{export_format}"
|
| 66 |
+
mesh_output.meshes[0].export(output_path)
|
| 67 |
+
|
| 68 |
+
del pipe
|
| 69 |
+
del output
|
| 70 |
+
del mesh_output
|
| 71 |
+
gc.collect()
|
| 72 |
+
|
| 73 |
+
print(f"Generation completed: {output_path}")
|
| 74 |
+
progress(1.0, desc="Completed!")
|
| 75 |
+
return gr.update(value="Generation successful!"), gr.update(value=gif_path), gr.update(value=output_path)
|
| 76 |
+
|
| 77 |
+
except Exception as model_error:
|
| 78 |
+
error_msg = f"Model execution error: {str(model_error)}"
|
| 79 |
+
print(error_msg)
|
| 80 |
+
return gr.update(value=error_msg), None, None
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
error_msg = f"General error: {str(e)}"
|
| 84 |
+
print(error_msg)
|
| 85 |
+
return gr.update(value=error_msg), None, None
|
| 86 |
+
|
| 87 |
+
def generate_3d_from_image(image, token, guidance_scale=7.0, export_format="obj", progress=gr.Progress()):
|
| 88 |
+
try:
|
| 89 |
+
if not validate_token(token):
|
| 90 |
+
return gr.update(value="Invalid Hugging Face token"), None, None
|
| 91 |
+
|
| 92 |
+
print("Starting image to 3D generation")
|
| 93 |
+
progress(0.1, desc="Loading model...")
|
| 94 |
+
|
| 95 |
+
pipe = ShapEImg2ImgPipeline.from_pretrained(
|
| 96 |
+
"openai/shap-e-img2img",
|
| 97 |
+
torch_dtype=torch.float32,
|
| 98 |
+
token=token,
|
| 99 |
+
revision="main",
|
| 100 |
+
low_cpu_mem_usage=True
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
os.makedirs("outputs", exist_ok=True)
|
| 104 |
+
|
| 105 |
+
import time
|
| 106 |
+
timestamp = int(time.time())
|
| 107 |
+
base_filename = f"outputs/image_to_3d_{timestamp}"
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
progress(0.3, desc="Preparing image...")
|
| 111 |
+
if isinstance(image, str):
|
| 112 |
+
image = Image.open(image)
|
| 113 |
+
elif isinstance(image, np.ndarray):
|
| 114 |
+
image = Image.fromarray(image)
|
| 115 |
+
|
| 116 |
+
image = image.resize((128, 128))
|
| 117 |
+
|
| 118 |
+
progress(0.5, desc="Creating 3D model...")
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
output = pipe(
|
| 121 |
+
image=image,
|
| 122 |
+
guidance_scale=min(guidance_scale, 10.0),
|
| 123 |
+
num_inference_steps=16
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
progress(0.7, desc="Creating GIF...")
|
| 127 |
+
gif_path = export_to_gif(output.images, f"{base_filename}.gif")
|
| 128 |
+
|
| 129 |
+
progress(0.8, desc="Creating 3D mesh...")
|
| 130 |
+
mesh_output = pipe(
|
| 131 |
+
image=image,
|
| 132 |
+
guidance_scale=min(guidance_scale, 10.0),
|
| 133 |
+
num_inference_steps=16,
|
| 134 |
+
output_type="mesh"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
progress(0.9, desc="Saving files...")
|
| 138 |
+
output_path = f"{base_filename}.{export_format}"
|
| 139 |
+
mesh_output.meshes[0].export(output_path)
|
| 140 |
+
|
| 141 |
+
del pipe
|
| 142 |
+
del output
|
| 143 |
+
del mesh_output
|
| 144 |
+
gc.collect()
|
| 145 |
+
|
| 146 |
+
print(f"Generation completed: {output_path}")
|
| 147 |
+
progress(1.0, desc="Completed!")
|
| 148 |
+
return gr.update(value="Generation successful!"), gr.update(value=gif_path), gr.update(value=output_path)
|
| 149 |
+
|
| 150 |
+
except Exception as model_error:
|
| 151 |
+
error_msg = f"Model execution error: {str(model_error)}"
|
| 152 |
+
print(error_msg)
|
| 153 |
+
return gr.update(value=error_msg), None, None
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
error_msg = f"General error: {str(e)}"
|
| 157 |
+
print(error_msg)
|
| 158 |
+
return gr.update(value=error_msg), None, None
|
| 159 |
+
|
| 160 |
+
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
| 161 |
+
gr.Markdown("# SORA-3D - Text/Image to 3D Model Generator")
|
| 162 |
+
gr.Markdown("Create 3D models from text or image input. You need a Hugging Face token to use this app.")
|
| 163 |
+
gr.Markdown("""
|
| 164 |
+
> **Important Notes**:
|
| 165 |
+
> - Processing time may be longer on CPU
|
| 166 |
+
> - Keep guidance scale under 10 for faster results
|
| 167 |
+
> - Number of steps is fixed at 16
|
| 168 |
+
> - Image size is optimized for quality/speed
|
| 169 |
+
""")
|
| 170 |
+
|
| 171 |
+
with gr.Tab("Text → 3D"):
|
| 172 |
+
with gr.Row():
|
| 173 |
+
with gr.Column():
|
| 174 |
+
text_input = gr.Textbox(label="Enter description for 3D model", scale=2)
|
| 175 |
+
text_token = gr.Textbox(label="Hugging Face Token", type="password", scale=2)
|
| 176 |
+
with gr.Row():
|
| 177 |
+
text_guidance = gr.Slider(minimum=1, maximum=10, value=7, label="Guidance Scale", scale=1)
|
| 178 |
+
text_format = gr.Radio(["obj", "glb"], label="Export Format", value="obj", scale=1)
|
| 179 |
+
text_button = gr.Button("Generate", variant="primary")
|
| 180 |
+
|
| 181 |
+
with gr.Column():
|
| 182 |
+
text_status = gr.Textbox(label="Status", interactive=False)
|
| 183 |
+
text_preview = gr.Image(label="3D Preview (GIF)", interactive=False)
|
| 184 |
+
text_file = gr.File(label="3D Model File")
|
| 185 |
+
|
| 186 |
+
with gr.Tab("Image → 3D"):
|
| 187 |
+
with gr.Row():
|
| 188 |
+
with gr.Column():
|
| 189 |
+
image_input = gr.Image(label="Image to convert to 3D", type="pil", scale=2)
|
| 190 |
+
image_token = gr.Textbox(label="Hugging Face Token", type="password", scale=2)
|
| 191 |
+
with gr.Row():
|
| 192 |
+
image_guidance = gr.Slider(minimum=1, maximum=10, value=7, label="Guidance Scale", scale=1)
|
| 193 |
+
image_format = gr.Radio(["obj", "glb"], label="Export Format", value="obj", scale=1)
|
| 194 |
+
image_button = gr.Button("Generate", variant="primary")
|
| 195 |
+
|
| 196 |
+
with gr.Column():
|
| 197 |
+
image_status = gr.Textbox(label="Status", interactive=False)
|
| 198 |
+
image_preview = gr.Image(label="3D Preview (GIF)", interactive=False)
|
| 199 |
+
image_file = gr.File(label="3D Model File")
|
| 200 |
+
|
| 201 |
+
text_button.click(
|
| 202 |
+
generate_3d_from_text,
|
| 203 |
+
inputs=[text_input, text_token, text_guidance, text_format],
|
| 204 |
+
outputs=[text_status, text_preview, text_file]
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
image_button.click(
|
| 208 |
+
generate_3d_from_image,
|
| 209 |
+
inputs=[image_input, image_token, image_guidance, image_format],
|
| 210 |
+
outputs=[image_status, image_preview, image_file]
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
if __name__ == "__main__":
|
| 214 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
+
--find-links https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
|
| 3 |
+
|
| 4 |
+
torch==2.4.0
|
| 5 |
+
torchvision==0.19.0
|
| 6 |
+
pillow==10.4.0
|
| 7 |
+
imageio==2.36.1
|
| 8 |
+
imageio-ffmpeg==0.5.1
|
| 9 |
+
tqdm==4.67.1
|
| 10 |
+
easydict==1.13
|
| 11 |
+
opencv-python-headless==4.10.0.84
|
| 12 |
+
scipy==1.14.1
|
| 13 |
+
rembg==2.0.60
|
| 14 |
+
onnxruntime==1.20.1
|
| 15 |
+
trimesh==4.5.3
|
| 16 |
+
xatlas==0.0.9
|
| 17 |
+
pyvista==0.44.2
|
| 18 |
+
pymeshfix==0.17.0
|
| 19 |
+
igraph==0.11.8
|
| 20 |
+
git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
| 21 |
+
xformers==0.0.27.post2
|
| 22 |
+
kaolin==0.17.0
|
| 23 |
+
spconv-cu120==2.3.6
|
| 24 |
+
|
| 25 |
+
gradio_litmodel3d==0.0.1
|
| 26 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
| 27 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
|
| 28 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
| 29 |
+
transformers>=4.30.0
|
| 30 |
+
accelerate>=0.20.0
|
| 31 |
+
diffusers>=0.24.0
|
| 32 |
+
invisible_watermark
|
| 33 |
+
xformers
|
| 34 |
+
sentencepiece
|
| 35 |
+
peft
|
| 36 |
+
safetensors>=0.4.0
|
| 37 |
+
gradio==5.14.0
|
| 38 |
+
huggingface-hub>=0.19.0
|
| 39 |
+
sacremoses
|
| 40 |
+
numpy>=1.24.0
|
| 41 |
+
uvicorn>=0.14.0
|
| 42 |
+
spaces
|