File size: 29,398 Bytes
111ba01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include "rasterize_gl.h"
#include "glutil.h"
#include <vector>
#define STRINGIFY_SHADER_SOURCE(x) #x
//------------------------------------------------------------------------
// Helpers.
#define ROUND_UP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
static int ROUND_UP_BITS(uint32_t x, uint32_t y)
{
// Round x up so that it has at most y bits of mantissa.
if (x < (1u << y))
return x;
uint32_t m = 0;
while (x & ~m)
m = (m << 1) | 1u;
m >>= y;
if (!(x & m))
return x;
return (x | m) + 1u;
}
//------------------------------------------------------------------------
// Draw command struct used by rasterizer.
struct GLDrawCmd
{
uint32_t count;
uint32_t instanceCount;
uint32_t firstIndex;
uint32_t baseVertex;
uint32_t baseInstance;
};
//------------------------------------------------------------------------
// GL helpers.
static void compileGLShader(NVDR_CTX_ARGS, const RasterizeGLState& s, GLuint* pShader, GLenum shaderType, const char* src_buf)
{
std::string src(src_buf);
// Set preprocessor directives.
int n = src.find('\n') + 1; // After first line containing #version directive.
if (s.enableZModify)
src.insert(n, "#define IF_ZMODIFY(x) x\n");
else
src.insert(n, "#define IF_ZMODIFY(x)\n");
const char *cstr = src.c_str();
*pShader = 0;
NVDR_CHECK_GL_ERROR(*pShader = glCreateShader(shaderType));
NVDR_CHECK_GL_ERROR(glShaderSource(*pShader, 1, &cstr, 0));
NVDR_CHECK_GL_ERROR(glCompileShader(*pShader));
}
static void constructGLProgram(NVDR_CTX_ARGS, GLuint* pProgram, GLuint glVertexShader, GLuint glGeometryShader, GLuint glFragmentShader)
{
*pProgram = 0;
GLuint glProgram = 0;
NVDR_CHECK_GL_ERROR(glProgram = glCreateProgram());
NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glVertexShader));
NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glGeometryShader));
NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glFragmentShader));
NVDR_CHECK_GL_ERROR(glLinkProgram(glProgram));
GLint linkStatus = 0;
NVDR_CHECK_GL_ERROR(glGetProgramiv(glProgram, GL_LINK_STATUS, &linkStatus));
if (!linkStatus)
{
GLint infoLen = 0;
NVDR_CHECK_GL_ERROR(glGetProgramiv(glProgram, GL_INFO_LOG_LENGTH, &infoLen));
if (infoLen)
{
const char* hdr = "glLinkProgram() failed:\n";
std::vector<char> info(strlen(hdr) + infoLen);
strcpy(&info[0], hdr);
NVDR_CHECK_GL_ERROR(glGetProgramInfoLog(glProgram, infoLen, &infoLen, &info[strlen(hdr)]));
NVDR_CHECK(0, &info[0]);
}
NVDR_CHECK(0, "glLinkProgram() failed");
}
*pProgram = glProgram;
}
//------------------------------------------------------------------------
// Shared C++ functions.
void rasterizeInitGLContext(NVDR_CTX_ARGS, RasterizeGLState& s, int cudaDeviceIdx)
{
// Create GL context and set it current.
s.glctx = createGLContext(cudaDeviceIdx);
setGLContext(s.glctx);
// Version check.
GLint vMajor = 0;
GLint vMinor = 0;
glGetIntegerv(GL_MAJOR_VERSION, &vMajor);
glGetIntegerv(GL_MINOR_VERSION, &vMinor);
glGetError(); // Clear possible GL_INVALID_ENUM error in version query.
LOG(INFO) << "OpenGL version reported as " << vMajor << "." << vMinor;
NVDR_CHECK((vMajor == 4 && vMinor >= 4) || vMajor > 4, "OpenGL 4.4 or later is required");
// Enable depth modification workaround on A100 and later.
int capMajor = 0;
NVDR_CHECK_CUDA_ERROR(cudaDeviceGetAttribute(&capMajor, cudaDevAttrComputeCapabilityMajor, cudaDeviceIdx));
s.enableZModify = (capMajor >= 8);
// Number of output buffers.
int num_outputs = s.enableDB ? 2 : 1;
// Set up vertex shader.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glVertexShader, GL_VERTEX_SHADER,
"#version 330\n"
"#extension GL_ARB_shader_draw_parameters : enable\n"
STRINGIFY_SHADER_SOURCE(
layout(location = 0) in vec4 in_pos;
out int v_layer;
out int v_offset;
void main()
{
int layer = gl_DrawIDARB;
gl_Position = in_pos;
v_layer = layer;
v_offset = gl_BaseInstanceARB; // Sneak in TriID offset here.
}
)
);
// Geometry and fragment shaders depend on if bary differential output is enabled or not.
if (s.enableDB)
{
// Set up geometry shader. Calculation of per-pixel bary differentials is based on:
// u = (u/w) / (1/w)
// --> du/dX = d((u/w) / (1/w))/dX
// --> du/dX = [d(u/w)/dX - u*d(1/w)/dX] * w
// and we know both d(u/w)/dX and d(1/w)/dX are constant over triangle.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glGeometryShader, GL_GEOMETRY_SHADER,
"#version 430\n"
STRINGIFY_SHADER_SOURCE(
layout(triangles) in;
layout(triangle_strip, max_vertices=3) out;
layout(location = 0) uniform vec2 vp_scale;
in int v_layer[];
in int v_offset[];
out vec4 var_uvzw;
out vec4 var_db;
void main()
{
// Plane equations for bary differentials.
float w0 = gl_in[0].gl_Position.w;
float w1 = gl_in[1].gl_Position.w;
float w2 = gl_in[2].gl_Position.w;
vec2 p0 = gl_in[0].gl_Position.xy;
vec2 p1 = gl_in[1].gl_Position.xy;
vec2 p2 = gl_in[2].gl_Position.xy;
vec2 e0 = p0*w2 - p2*w0;
vec2 e1 = p1*w2 - p2*w1;
float a = e0.x*e1.y - e0.y*e1.x;
// Clamp area to an epsilon to avoid arbitrarily high bary differentials.
float eps = 1e-6f; // ~1 pixel in 1k x 1k image.
float ca = (abs(a) >= eps) ? a : (a < 0.f) ? -eps : eps; // Clamp with sign.
float ia = 1.f / ca; // Inverse area.
vec2 ascl = ia * vp_scale;
float dudx = e1.y * ascl.x;
float dudy = -e1.x * ascl.y;
float dvdx = -e0.y * ascl.x;
float dvdy = e0.x * ascl.y;
float duwdx = w2 * dudx;
float dvwdx = w2 * dvdx;
float duvdx = w0 * dudx + w1 * dvdx;
float duwdy = w2 * dudy;
float dvwdy = w2 * dvdy;
float duvdy = w0 * dudy + w1 * dvdy;
vec4 db0 = vec4(duvdx - dvwdx, duvdy - dvwdy, dvwdx, dvwdy);
vec4 db1 = vec4(duwdx, duwdy, duvdx - duwdx, duvdy - duwdy);
vec4 db2 = vec4(duwdx, duwdy, dvwdx, dvwdy);
int layer_id = v_layer[0];
int prim_id = gl_PrimitiveIDIn + v_offset[0];
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[0].gl_Position.x, gl_in[0].gl_Position.y, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_uvzw = vec4(1.f, 0.f, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_db = db0; EmitVertex();
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[1].gl_Position.x, gl_in[1].gl_Position.y, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_uvzw = vec4(0.f, 1.f, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_db = db1; EmitVertex();
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[2].gl_Position.x, gl_in[2].gl_Position.y, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_uvzw = vec4(0.f, 0.f, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_db = db2; EmitVertex();
}
)
);
// Set up fragment shader.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShader, GL_FRAGMENT_SHADER,
"#version 430\n"
STRINGIFY_SHADER_SOURCE(
in vec4 var_uvzw;
in vec4 var_db;
layout(location = 0) out vec4 out_raster;
layout(location = 1) out vec4 out_db;
IF_ZMODIFY(
layout(location = 1) uniform float in_dummy;
)
void main()
{
int id_int = gl_PrimitiveID + 1;
float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
out_db = var_db * var_uvzw.w;
IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
}
)
);
// Set up fragment shader for depth peeling.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShaderDP, GL_FRAGMENT_SHADER,
"#version 430\n"
STRINGIFY_SHADER_SOURCE(
in vec4 var_uvzw;
in vec4 var_db;
layout(binding = 0) uniform sampler2DArray out_prev;
layout(location = 0) out vec4 out_raster;
layout(location = 1) out vec4 out_db;
IF_ZMODIFY(
layout(location = 1) uniform float in_dummy;
)
void main()
{
int id_int = gl_PrimitiveID + 1;
float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
vec4 prev = texelFetch(out_prev, ivec3(gl_FragCoord.x, gl_FragCoord.y, gl_Layer), 0);
float depth_new = var_uvzw.z / var_uvzw.w;
if (prev.w == 0 || depth_new <= prev.z)
discard;
out_raster = vec4(var_uvzw.x, var_uvzw.y, depth_new, id_float);
out_db = var_db * var_uvzw.w;
IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
}
)
);
}
else
{
// Geometry shader without bary differential output.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glGeometryShader, GL_GEOMETRY_SHADER,
"#version 330\n"
STRINGIFY_SHADER_SOURCE(
layout(triangles) in;
layout(triangle_strip, max_vertices=3) out;
in int v_layer[];
in int v_offset[];
out vec4 var_uvzw;
void main()
{
int layer_id = v_layer[0];
int prim_id = gl_PrimitiveIDIn + v_offset[0];
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[0].gl_Position.x, gl_in[0].gl_Position.y, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_uvzw = vec4(1.f, 0.f, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); EmitVertex();
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[1].gl_Position.x, gl_in[1].gl_Position.y, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_uvzw = vec4(0.f, 1.f, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); EmitVertex();
gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[2].gl_Position.x, gl_in[2].gl_Position.y, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_uvzw = vec4(0.f, 0.f, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); EmitVertex();
}
)
);
// Fragment shader without bary differential output.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShader, GL_FRAGMENT_SHADER,
"#version 430\n"
STRINGIFY_SHADER_SOURCE(
in vec4 var_uvzw;
layout(location = 0) out vec4 out_raster;
IF_ZMODIFY(
layout(location = 1) uniform float in_dummy;
)
void main()
{
int id_int = gl_PrimitiveID + 1;
float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
}
)
);
// Depth peeling variant of fragment shader.
compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShaderDP, GL_FRAGMENT_SHADER,
"#version 430\n"
STRINGIFY_SHADER_SOURCE(
in vec4 var_uvzw;
layout(binding = 0) uniform sampler2DArray out_prev;
layout(location = 0) out vec4 out_raster;
IF_ZMODIFY(
layout(location = 1) uniform float in_dummy;
)
void main()
{
int id_int = gl_PrimitiveID + 1;
float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
vec4 prev = texelFetch(out_prev, ivec3(gl_FragCoord.x, gl_FragCoord.y, gl_Layer), 0);
float depth_new = var_uvzw.z / var_uvzw.w;
if (prev.w == 0 || depth_new <= prev.z)
discard;
out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
}
)
);
}
// Finalize programs.
constructGLProgram(NVDR_CTX_PARAMS, &s.glProgram, s.glVertexShader, s.glGeometryShader, s.glFragmentShader);
constructGLProgram(NVDR_CTX_PARAMS, &s.glProgramDP, s.glVertexShader, s.glGeometryShader, s.glFragmentShaderDP);
// Construct main fbo and bind permanently.
NVDR_CHECK_GL_ERROR(glGenFramebuffers(1, &s.glFBO));
NVDR_CHECK_GL_ERROR(glBindFramebuffer(GL_FRAMEBUFFER, s.glFBO));
// Enable two color attachments.
GLenum draw_buffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
NVDR_CHECK_GL_ERROR(glDrawBuffers(num_outputs, draw_buffers));
// Construct vertex array object.
NVDR_CHECK_GL_ERROR(glGenVertexArrays(1, &s.glVAO));
NVDR_CHECK_GL_ERROR(glBindVertexArray(s.glVAO));
// Construct position buffer, bind permanently, enable, set ptr.
NVDR_CHECK_GL_ERROR(glGenBuffers(1, &s.glPosBuffer));
NVDR_CHECK_GL_ERROR(glBindBuffer(GL_ARRAY_BUFFER, s.glPosBuffer));
NVDR_CHECK_GL_ERROR(glEnableVertexAttribArray(0));
NVDR_CHECK_GL_ERROR(glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0));
// Construct index buffer and bind permanently.
NVDR_CHECK_GL_ERROR(glGenBuffers(1, &s.glTriBuffer));
NVDR_CHECK_GL_ERROR(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s.glTriBuffer));
// Set up depth test.
NVDR_CHECK_GL_ERROR(glEnable(GL_DEPTH_TEST));
NVDR_CHECK_GL_ERROR(glDepthFunc(GL_LESS));
NVDR_CHECK_GL_ERROR(glClearDepth(1.0));
// Create and bind output buffers. Storage is allocated later.
NVDR_CHECK_GL_ERROR(glGenTextures(num_outputs, s.glColorBuffer));
for (int i=0; i < num_outputs; i++)
{
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[i]));
NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, s.glColorBuffer[i], 0));
}
// Create and bind depth/stencil buffer. Storage is allocated later.
NVDR_CHECK_GL_ERROR(glGenTextures(1, &s.glDepthStencilBuffer));
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glDepthStencilBuffer));
NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, s.glDepthStencilBuffer, 0));
// Create texture name for previous output buffer (depth peeling).
NVDR_CHECK_GL_ERROR(glGenTextures(1, &s.glPrevOutBuffer));
}
void rasterizeResizeBuffers(NVDR_CTX_ARGS, RasterizeGLState& s, bool& changes, int posCount, int triCount, int width, int height, int depth)
{
changes = false;
// Resize vertex buffer?
if (posCount > s.posCount)
{
if (s.cudaPosBuffer)
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPosBuffer));
s.posCount = (posCount > 64) ? ROUND_UP_BITS(posCount, 2) : 64;
LOG(INFO) << "Increasing position buffer size to " << s.posCount << " float32";
NVDR_CHECK_GL_ERROR(glBufferData(GL_ARRAY_BUFFER, s.posCount * sizeof(float), NULL, GL_DYNAMIC_DRAW));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterBuffer(&s.cudaPosBuffer, s.glPosBuffer, cudaGraphicsRegisterFlagsWriteDiscard));
changes = true;
}
// Resize triangle buffer?
if (triCount > s.triCount)
{
if (s.cudaTriBuffer)
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaTriBuffer));
s.triCount = (triCount > 64) ? ROUND_UP_BITS(triCount, 2) : 64;
LOG(INFO) << "Increasing triangle buffer size to " << s.triCount << " int32";
NVDR_CHECK_GL_ERROR(glBufferData(GL_ELEMENT_ARRAY_BUFFER, s.triCount * sizeof(int32_t), NULL, GL_DYNAMIC_DRAW));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterBuffer(&s.cudaTriBuffer, s.glTriBuffer, cudaGraphicsRegisterFlagsWriteDiscard));
changes = true;
}
// Resize framebuffer?
if (width > s.width || height > s.height || depth > s.depth)
{
int num_outputs = s.enableDB ? 2 : 1;
if (s.cudaColorBuffer[0])
for (int i=0; i < num_outputs; i++)
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaColorBuffer[i]));
if (s.cudaPrevOutBuffer)
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPrevOutBuffer));
s.cudaPrevOutBuffer = 0;
}
// New framebuffer size.
s.width = (width > s.width) ? width : s.width;
s.height = (height > s.height) ? height : s.height;
s.depth = (depth > s.depth) ? depth : s.depth;
s.width = ROUND_UP(s.width, 32);
s.height = ROUND_UP(s.height, 32);
LOG(INFO) << "Increasing frame buffer size to (width, height, depth) = (" << s.width << ", " << s.height << ", " << s.depth << ")";
// Allocate color buffers.
for (int i=0; i < num_outputs; i++)
{
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[i]));
NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA32F, s.width, s.height, s.depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
}
// Allocate depth/stencil buffer.
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glDepthStencilBuffer));
NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_DEPTH24_STENCIL8, s.width, s.height, s.depth, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, 0));
// (Re-)register all GL buffers into Cuda.
for (int i=0; i < num_outputs; i++)
NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterImage(&s.cudaColorBuffer[i], s.glColorBuffer[i], GL_TEXTURE_3D, cudaGraphicsRegisterFlagsReadOnly));
changes = true;
}
}
void rasterizeRender(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, const float* posPtr, int posCount, int vtxPerInstance, const int32_t* triPtr, int triCount, const int32_t* rangesPtr, int width, int height, int depth, int peeling_idx)
{
// Only copy inputs if we are on first iteration of depth peeling or not doing it at all.
if (peeling_idx < 1)
{
if (triPtr)
{
// Copy both position and triangle buffers.
void* glPosPtr = NULL;
void* glTriPtr = NULL;
size_t posBytes = 0;
size_t triBytes = 0;
NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(2, &s.cudaPosBuffer, stream));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glPosPtr, &posBytes, s.cudaPosBuffer));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glTriPtr, &triBytes, s.cudaTriBuffer));
NVDR_CHECK(posBytes >= posCount * sizeof(float), "mapped GL position buffer size mismatch");
NVDR_CHECK(triBytes >= triCount * sizeof(int32_t), "mapped GL triangle buffer size mismatch");
NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glPosPtr, posPtr, posCount * sizeof(float), cudaMemcpyDeviceToDevice, stream));
NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glTriPtr, triPtr, triCount * sizeof(int32_t), cudaMemcpyDeviceToDevice, stream));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(2, &s.cudaPosBuffer, stream));
}
else
{
// Copy position buffer only. Triangles are already copied and known to be constant.
void* glPosPtr = NULL;
size_t posBytes = 0;
NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(1, &s.cudaPosBuffer, stream));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glPosPtr, &posBytes, s.cudaPosBuffer));
NVDR_CHECK(posBytes >= posCount * sizeof(float), "mapped GL position buffer size mismatch");
NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glPosPtr, posPtr, posCount * sizeof(float), cudaMemcpyDeviceToDevice, stream));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(1, &s.cudaPosBuffer, stream));
}
}
// Select program based on whether we have a depth peeling input or not.
if (peeling_idx < 1)
{
// Normal case: No peeling, or peeling disabled.
NVDR_CHECK_GL_ERROR(glUseProgram(s.glProgram));
}
else
{
// If we don't have a third buffer yet, create one.
if (!s.cudaPrevOutBuffer)
{
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glPrevOutBuffer));
NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA32F, s.width, s.height, s.depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterImage(&s.cudaPrevOutBuffer, s.glPrevOutBuffer, GL_TEXTURE_3D, cudaGraphicsRegisterFlagsReadOnly));
}
// Swap the GL buffers.
GLuint glTempBuffer = s.glPrevOutBuffer;
s.glPrevOutBuffer = s.glColorBuffer[0];
s.glColorBuffer[0] = glTempBuffer;
// Swap the Cuda buffers.
cudaGraphicsResource_t cudaTempBuffer = s.cudaPrevOutBuffer;
s.cudaPrevOutBuffer = s.cudaColorBuffer[0];
s.cudaColorBuffer[0] = cudaTempBuffer;
// Bind the new output buffer.
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[0]));
NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, s.glColorBuffer[0], 0));
// Bind old buffer as the input texture.
NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glPrevOutBuffer));
// Activate the correct program.
NVDR_CHECK_GL_ERROR(glUseProgram(s.glProgramDP));
}
// Set viewport, clear color buffer(s) and depth/stencil buffer.
NVDR_CHECK_GL_ERROR(glViewport(0, 0, width, height));
NVDR_CHECK_GL_ERROR(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
// If outputting bary differentials, set resolution uniform
if (s.enableDB)
NVDR_CHECK_GL_ERROR(glUniform2f(0, 2.f / (float)width, 2.f / (float)height));
// Set the dummy uniform if depth modification workaround is active.
if (s.enableZModify)
NVDR_CHECK_GL_ERROR(glUniform1f(1, 0.f));
// Render the meshes.
if (depth == 1 && !rangesPtr)
{
// Trivial case.
NVDR_CHECK_GL_ERROR(glDrawElements(GL_TRIANGLES, triCount, GL_UNSIGNED_INT, 0));
}
else
{
// Populate a buffer for draw commands and execute it.
std::vector<GLDrawCmd> drawCmdBuffer(depth);
if (!rangesPtr)
{
// Fill in range array to instantiate the same triangles for each output layer.
// Triangle IDs starts at zero (i.e., one) for each layer, so they correspond to
// the first dimension in addressing the triangle array.
for (int i=0; i < depth; i++)
{
GLDrawCmd& cmd = drawCmdBuffer[i];
cmd.firstIndex = 0;
cmd.count = triCount;
cmd.baseVertex = vtxPerInstance * i;
cmd.baseInstance = 0;
cmd.instanceCount = 1;
}
}
else
{
// Fill in the range array according to user-given ranges. Triangle IDs point
// to the input triangle array, NOT index within range, so they correspond to
// the first dimension in addressing the triangle array.
for (int i=0, j=0; i < depth; i++)
{
GLDrawCmd& cmd = drawCmdBuffer[i];
int first = rangesPtr[j++];
int count = rangesPtr[j++];
NVDR_CHECK(first >= 0 && count >= 0, "range contains negative values");
NVDR_CHECK((first + count) * 3 <= triCount, "range extends beyond end of triangle buffer");
cmd.firstIndex = first * 3;
cmd.count = count * 3;
cmd.baseVertex = 0;
cmd.baseInstance = first;
cmd.instanceCount = 1;
}
}
// Draw!
NVDR_CHECK_GL_ERROR(glMultiDrawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_INT, &drawCmdBuffer[0], depth, sizeof(GLDrawCmd)));
}
}
void rasterizeCopyResults(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, float** outputPtr, int width, int height, int depth)
{
// Copy color buffers to output tensors.
cudaArray_t array = 0;
cudaChannelFormatDesc arrayDesc = {}; // For error checking.
cudaExtent arrayExt = {}; // For error checking.
int num_outputs = s.enableDB ? 2 : 1;
NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(num_outputs, s.cudaColorBuffer, stream));
for (int i=0; i < num_outputs; i++)
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsSubResourceGetMappedArray(&array, s.cudaColorBuffer[i], 0, 0));
NVDR_CHECK_CUDA_ERROR(cudaArrayGetInfo(&arrayDesc, &arrayExt, NULL, array));
NVDR_CHECK(arrayDesc.f == cudaChannelFormatKindFloat, "CUDA mapped array data kind mismatch");
NVDR_CHECK(arrayDesc.x == 32 && arrayDesc.y == 32 && arrayDesc.z == 32 && arrayDesc.w == 32, "CUDA mapped array data width mismatch");
NVDR_CHECK(arrayExt.width >= width && arrayExt.height >= height && arrayExt.depth >= depth, "CUDA mapped array extent mismatch");
cudaMemcpy3DParms p = {0};
p.srcArray = array;
p.dstPtr.ptr = outputPtr[i];
p.dstPtr.pitch = width * 4 * sizeof(float);
p.dstPtr.xsize = width;
p.dstPtr.ysize = height;
p.extent.width = width;
p.extent.height = height;
p.extent.depth = depth;
p.kind = cudaMemcpyDeviceToDevice;
NVDR_CHECK_CUDA_ERROR(cudaMemcpy3DAsync(&p, stream));
}
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(num_outputs, s.cudaColorBuffer, stream));
}
void rasterizeReleaseBuffers(NVDR_CTX_ARGS, RasterizeGLState& s)
{
int num_outputs = s.enableDB ? 2 : 1;
if (s.cudaPosBuffer)
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPosBuffer));
s.cudaPosBuffer = 0;
}
if (s.cudaTriBuffer)
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaTriBuffer));
s.cudaTriBuffer = 0;
}
for (int i=0; i < num_outputs; i++)
{
if (s.cudaColorBuffer[i])
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaColorBuffer[i]));
s.cudaColorBuffer[i] = 0;
}
}
if (s.cudaPrevOutBuffer)
{
NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPrevOutBuffer));
s.cudaPrevOutBuffer = 0;
}
}
//------------------------------------------------------------------------
|