File size: 10,407 Bytes
111ba01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include "common.h"
#include "rasterize.h"
//------------------------------------------------------------------------
// Cuda forward rasterizer pixel shader kernel.
__global__ void RasterizeCudaFwdShaderKernel(const RasterizeCudaFwdShaderParams p)
{
// Calculate pixel position.
int px = blockIdx.x * blockDim.x + threadIdx.x;
int py = blockIdx.y * blockDim.y + threadIdx.y;
int pz = blockIdx.z;
if (px >= p.width_out || py >= p.height_out || pz >= p.depth)
return;
// Pixel indices.
int pidx_in = px + p.width_in * (py + p.height_in * pz);
int pidx_out = px + p.width_out * (py + p.height_out * pz);
// Fetch triangle idx.
int triIdx = p.in_idx[pidx_in] - 1;
if (triIdx < 0 || triIdx >= p.numTriangles)
{
// No or corrupt triangle.
((float4*)p.out)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out.
((float4*)p.out_db)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out_db.
return;
}
// Fetch vertex indices.
int vi0 = p.tri[triIdx * 3 + 0];
int vi1 = p.tri[triIdx * 3 + 1];
int vi2 = p.tri[triIdx * 3 + 2];
// Bail out if vertex indices are corrupt.
if (vi0 < 0 || vi0 >= p.numVertices ||
vi1 < 0 || vi1 >= p.numVertices ||
vi2 < 0 || vi2 >= p.numVertices)
return;
// In instance mode, adjust vertex indices by minibatch index.
if (p.instance_mode)
{
vi0 += pz * p.numVertices;
vi1 += pz * p.numVertices;
vi2 += pz * p.numVertices;
}
// Fetch vertex positions.
float4 p0 = ((float4*)p.pos)[vi0];
float4 p1 = ((float4*)p.pos)[vi1];
float4 p2 = ((float4*)p.pos)[vi2];
// Evaluate edge functions.
float fx = p.xs * (float)px + p.xo;
float fy = p.ys * (float)py + p.yo;
float p0x = p0.x - fx * p0.w;
float p0y = p0.y - fy * p0.w;
float p1x = p1.x - fx * p1.w;
float p1y = p1.y - fy * p1.w;
float p2x = p2.x - fx * p2.w;
float p2y = p2.y - fy * p2.w;
float a0 = p1x*p2y - p1y*p2x;
float a1 = p2x*p0y - p2y*p0x;
float a2 = p0x*p1y - p0y*p1x;
// Perspective correct, normalized barycentrics.
float iw = 1.f / (a0 + a1 + a2);
float b0 = a0 * iw;
float b1 = a1 * iw;
// Compute z/w for depth buffer.
float z = p0.z * a0 + p1.z * a1 + p2.z * a2;
float w = p0.w * a0 + p1.w * a1 + p2.w * a2;
float zw = z / w;
// Clamps to avoid NaNs.
b0 = __saturatef(b0); // Clamp to [+0.0, 1.0].
b1 = __saturatef(b1); // Clamp to [+0.0, 1.0].
zw = fmaxf(fminf(zw, 1.f), -1.f);
// Emit output.
((float4*)p.out)[pidx_out] = make_float4(b0, b1, zw, triidx_to_float(triIdx + 1));
// Calculate bary pixel differentials.
float dfxdx = p.xs * iw;
float dfydy = p.ys * iw;
float da0dx = p2.y*p1.w - p1.y*p2.w;
float da0dy = p1.x*p2.w - p2.x*p1.w;
float da1dx = p0.y*p2.w - p2.y*p0.w;
float da1dy = p2.x*p0.w - p0.x*p2.w;
float da2dx = p1.y*p0.w - p0.y*p1.w;
float da2dy = p0.x*p1.w - p1.x*p0.w;
float datdx = da0dx + da1dx + da2dx;
float datdy = da0dy + da1dy + da2dy;
float dudx = dfxdx * (b0 * datdx - da0dx);
float dudy = dfydy * (b0 * datdy - da0dy);
float dvdx = dfxdx * (b1 * datdx - da1dx);
float dvdy = dfydy * (b1 * datdy - da1dy);
// Emit bary pixel differentials.
((float4*)p.out_db)[pidx_out] = make_float4(dudx, dudy, dvdx, dvdy);
}
//------------------------------------------------------------------------
// Gradient Cuda kernel.
template <bool ENABLE_DB>
static __forceinline__ __device__ void RasterizeGradKernelTemplate(const RasterizeGradParams p)
{
// Temporary space for coalesced atomics.
CA_DECLARE_TEMP(RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH * RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT);
// Calculate pixel position.
int px = blockIdx.x * blockDim.x + threadIdx.x;
int py = blockIdx.y * blockDim.y + threadIdx.y;
int pz = blockIdx.z;
if (px >= p.width || py >= p.height || pz >= p.depth)
return;
// Pixel index.
int pidx = px + p.width * (py + p.height * pz);
// Read triangle idx and dy.
float2 dy = ((float2*)p.dy)[pidx * 2];
float4 ddb = ENABLE_DB ? ((float4*)p.ddb)[pidx] : make_float4(0.f, 0.f, 0.f, 0.f);
int triIdx = float_to_triidx(((float*)p.out)[pidx * 4 + 3]) - 1;
// Exit if nothing to do.
if (triIdx < 0 || triIdx >= p.numTriangles)
return; // No or corrupt triangle.
int grad_all_dy = __float_as_int(dy.x) | __float_as_int(dy.y); // Bitwise OR of all incoming gradients.
int grad_all_ddb = 0;
if (ENABLE_DB)
grad_all_ddb = __float_as_int(ddb.x) | __float_as_int(ddb.y) | __float_as_int(ddb.z) | __float_as_int(ddb.w);
if (((grad_all_dy | grad_all_ddb) << 1) == 0)
return; // All incoming gradients are +0/-0.
// Fetch vertex indices.
int vi0 = p.tri[triIdx * 3 + 0];
int vi1 = p.tri[triIdx * 3 + 1];
int vi2 = p.tri[triIdx * 3 + 2];
// Bail out if vertex indices are corrupt.
if (vi0 < 0 || vi0 >= p.numVertices ||
vi1 < 0 || vi1 >= p.numVertices ||
vi2 < 0 || vi2 >= p.numVertices)
return;
// In instance mode, adjust vertex indices by minibatch index.
if (p.instance_mode)
{
vi0 += pz * p.numVertices;
vi1 += pz * p.numVertices;
vi2 += pz * p.numVertices;
}
// Initialize coalesced atomics.
CA_SET_GROUP(triIdx);
// Fetch vertex positions.
float4 p0 = ((float4*)p.pos)[vi0];
float4 p1 = ((float4*)p.pos)[vi1];
float4 p2 = ((float4*)p.pos)[vi2];
// Evaluate edge functions.
float fx = p.xs * (float)px + p.xo;
float fy = p.ys * (float)py + p.yo;
float p0x = p0.x - fx * p0.w;
float p0y = p0.y - fy * p0.w;
float p1x = p1.x - fx * p1.w;
float p1y = p1.y - fy * p1.w;
float p2x = p2.x - fx * p2.w;
float p2y = p2.y - fy * p2.w;
float a0 = p1x*p2y - p1y*p2x;
float a1 = p2x*p0y - p2y*p0x;
float a2 = p0x*p1y - p0y*p1x;
// Compute inverse area with epsilon.
float at = a0 + a1 + a2;
float ep = copysignf(1e-6f, at); // ~1 pixel in 1k x 1k image.
float iw = 1.f / (at + ep);
// Perspective correct, normalized barycentrics.
float b0 = a0 * iw;
float b1 = a1 * iw;
// Position gradients.
float gb0 = dy.x * iw;
float gb1 = dy.y * iw;
float gbb = gb0 * b0 + gb1 * b1;
float gp0x = gbb * (p2y - p1y) - gb1 * p2y;
float gp1x = gbb * (p0y - p2y) + gb0 * p2y;
float gp2x = gbb * (p1y - p0y) - gb0 * p1y + gb1 * p0y;
float gp0y = gbb * (p1x - p2x) + gb1 * p2x;
float gp1y = gbb * (p2x - p0x) - gb0 * p2x;
float gp2y = gbb * (p0x - p1x) + gb0 * p1x - gb1 * p0x;
float gp0w = -fx * gp0x - fy * gp0y;
float gp1w = -fx * gp1x - fy * gp1y;
float gp2w = -fx * gp2x - fy * gp2y;
// Bary differential gradients.
if (ENABLE_DB && ((grad_all_ddb) << 1) != 0)
{
float dfxdX = p.xs * iw;
float dfydY = p.ys * iw;
ddb.x *= dfxdX;
ddb.y *= dfydY;
ddb.z *= dfxdX;
ddb.w *= dfydY;
float da0dX = p1.y * p2.w - p2.y * p1.w;
float da1dX = p2.y * p0.w - p0.y * p2.w;
float da2dX = p0.y * p1.w - p1.y * p0.w;
float da0dY = p2.x * p1.w - p1.x * p2.w;
float da1dY = p0.x * p2.w - p2.x * p0.w;
float da2dY = p1.x * p0.w - p0.x * p1.w;
float datdX = da0dX + da1dX + da2dX;
float datdY = da0dY + da1dY + da2dY;
float x01 = p0.x - p1.x;
float x12 = p1.x - p2.x;
float x20 = p2.x - p0.x;
float y01 = p0.y - p1.y;
float y12 = p1.y - p2.y;
float y20 = p2.y - p0.y;
float w01 = p0.w - p1.w;
float w12 = p1.w - p2.w;
float w20 = p2.w - p0.w;
float a0p1 = fy * p2.x - fx * p2.y;
float a0p2 = fx * p1.y - fy * p1.x;
float a1p0 = fx * p2.y - fy * p2.x;
float a1p2 = fy * p0.x - fx * p0.y;
float wdudX = 2.f * b0 * datdX - da0dX;
float wdudY = 2.f * b0 * datdY - da0dY;
float wdvdX = 2.f * b1 * datdX - da1dX;
float wdvdY = 2.f * b1 * datdY - da1dY;
float c0 = iw * (ddb.x * wdudX + ddb.y * wdudY + ddb.z * wdvdX + ddb.w * wdvdY);
float cx = c0 * fx - ddb.x * b0 - ddb.z * b1;
float cy = c0 * fy - ddb.y * b0 - ddb.w * b1;
float cxy = iw * (ddb.x * datdX + ddb.y * datdY);
float czw = iw * (ddb.z * datdX + ddb.w * datdY);
gp0x += c0 * y12 - cy * w12 + czw * p2y + ddb.w * p2.w;
gp1x += c0 * y20 - cy * w20 - cxy * p2y - ddb.y * p2.w;
gp2x += c0 * y01 - cy * w01 + cxy * p1y - czw * p0y + ddb.y * p1.w - ddb.w * p0.w;
gp0y += cx * w12 - c0 * x12 - czw * p2x - ddb.z * p2.w;
gp1y += cx * w20 - c0 * x20 + cxy * p2x + ddb.x * p2.w;
gp2y += cx * w01 - c0 * x01 - cxy * p1x + czw * p0x - ddb.x * p1.w + ddb.z * p0.w;
gp0w += cy * x12 - cx * y12 - czw * a1p0 + ddb.z * p2.y - ddb.w * p2.x;
gp1w += cy * x20 - cx * y20 - cxy * a0p1 - ddb.x * p2.y + ddb.y * p2.x;
gp2w += cy * x01 - cx * y01 - cxy * a0p2 - czw * a1p2 + ddb.x * p1.y - ddb.y * p1.x - ddb.z * p0.y + ddb.w * p0.x;
}
// Accumulate using coalesced atomics.
caAtomicAdd3_xyw(p.grad + 4 * vi0, gp0x, gp0y, gp0w);
caAtomicAdd3_xyw(p.grad + 4 * vi1, gp1x, gp1y, gp1w);
caAtomicAdd3_xyw(p.grad + 4 * vi2, gp2x, gp2y, gp2w);
}
// Template specializations.
__global__ void RasterizeGradKernel (const RasterizeGradParams p) { RasterizeGradKernelTemplate<false>(p); }
__global__ void RasterizeGradKernelDb(const RasterizeGradParams p) { RasterizeGradKernelTemplate<true>(p); }
//------------------------------------------------------------------------
|