File size: 10,407 Bytes
111ba01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto.  Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.

#include "common.h"
#include "rasterize.h"

//------------------------------------------------------------------------
// Cuda forward rasterizer pixel shader kernel.

__global__ void RasterizeCudaFwdShaderKernel(const RasterizeCudaFwdShaderParams p)
{
    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.width_out || py >= p.height_out || pz >= p.depth)
        return;

    // Pixel indices.
    int pidx_in  = px + p.width_in  * (py + p.height_in  * pz);
    int pidx_out = px + p.width_out * (py + p.height_out * pz);

    // Fetch triangle idx.
    int triIdx = p.in_idx[pidx_in] - 1;
    if (triIdx < 0 || triIdx >= p.numTriangles)
    {
        // No or corrupt triangle.
        ((float4*)p.out)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out.
        ((float4*)p.out_db)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out_db.
        return;
    }

    // Fetch vertex indices.
    int vi0 = p.tri[triIdx * 3 + 0];
    int vi1 = p.tri[triIdx * 3 + 1];
    int vi2 = p.tri[triIdx * 3 + 2];

    // Bail out if vertex indices are corrupt.
    if (vi0 < 0 || vi0 >= p.numVertices ||
        vi1 < 0 || vi1 >= p.numVertices ||
        vi2 < 0 || vi2 >= p.numVertices)
        return;

    // In instance mode, adjust vertex indices by minibatch index.
    if (p.instance_mode)
    {
        vi0 += pz * p.numVertices;
        vi1 += pz * p.numVertices;
        vi2 += pz * p.numVertices;
    }

    // Fetch vertex positions.
    float4 p0 = ((float4*)p.pos)[vi0];
    float4 p1 = ((float4*)p.pos)[vi1];
    float4 p2 = ((float4*)p.pos)[vi2];

    // Evaluate edge functions.
    float fx = p.xs * (float)px + p.xo;
    float fy = p.ys * (float)py + p.yo;
    float p0x = p0.x - fx * p0.w;
    float p0y = p0.y - fy * p0.w;
    float p1x = p1.x - fx * p1.w;
    float p1y = p1.y - fy * p1.w;
    float p2x = p2.x - fx * p2.w;
    float p2y = p2.y - fy * p2.w;
    float a0 = p1x*p2y - p1y*p2x;
    float a1 = p2x*p0y - p2y*p0x;
    float a2 = p0x*p1y - p0y*p1x;

    // Perspective correct, normalized barycentrics.
    float iw = 1.f / (a0 + a1 + a2);
    float b0 = a0 * iw;
    float b1 = a1 * iw;

    // Compute z/w for depth buffer.
    float z = p0.z * a0 + p1.z * a1 + p2.z * a2;
    float w = p0.w * a0 + p1.w * a1 + p2.w * a2;
    float zw = z / w;

    // Clamps to avoid NaNs.
    b0 = __saturatef(b0); // Clamp to [+0.0, 1.0].
    b1 = __saturatef(b1); // Clamp to [+0.0, 1.0].
    zw = fmaxf(fminf(zw, 1.f), -1.f);

    // Emit output.
    ((float4*)p.out)[pidx_out] = make_float4(b0, b1, zw, triidx_to_float(triIdx + 1));

    // Calculate bary pixel differentials.
    float dfxdx = p.xs * iw;
    float dfydy = p.ys * iw;
    float da0dx = p2.y*p1.w - p1.y*p2.w;
    float da0dy = p1.x*p2.w - p2.x*p1.w;
    float da1dx = p0.y*p2.w - p2.y*p0.w;
    float da1dy = p2.x*p0.w - p0.x*p2.w;
    float da2dx = p1.y*p0.w - p0.y*p1.w;
    float da2dy = p0.x*p1.w - p1.x*p0.w;
    float datdx = da0dx + da1dx + da2dx;
    float datdy = da0dy + da1dy + da2dy;
    float dudx = dfxdx * (b0 * datdx - da0dx);
    float dudy = dfydy * (b0 * datdy - da0dy);
    float dvdx = dfxdx * (b1 * datdx - da1dx);
    float dvdy = dfydy * (b1 * datdy - da1dy);

    // Emit bary pixel differentials.
    ((float4*)p.out_db)[pidx_out] = make_float4(dudx, dudy, dvdx, dvdy);
}

//------------------------------------------------------------------------
// Gradient Cuda kernel.

template <bool ENABLE_DB>
static __forceinline__ __device__ void RasterizeGradKernelTemplate(const RasterizeGradParams p)
{
    // Temporary space for coalesced atomics.
    CA_DECLARE_TEMP(RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH * RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT);

    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.width || py >= p.height || pz >= p.depth)
        return;

    // Pixel index.
    int pidx = px + p.width * (py + p.height * pz);

    // Read triangle idx and dy.
    float2 dy  = ((float2*)p.dy)[pidx * 2];
    float4 ddb = ENABLE_DB ? ((float4*)p.ddb)[pidx] : make_float4(0.f, 0.f, 0.f, 0.f);
    int triIdx = float_to_triidx(((float*)p.out)[pidx * 4 + 3]) - 1;

    // Exit if nothing to do.
    if (triIdx < 0 || triIdx >= p.numTriangles)
        return; // No or corrupt triangle.
    int grad_all_dy = __float_as_int(dy.x) | __float_as_int(dy.y); // Bitwise OR of all incoming gradients.
    int grad_all_ddb = 0;
    if (ENABLE_DB)
        grad_all_ddb = __float_as_int(ddb.x) | __float_as_int(ddb.y) | __float_as_int(ddb.z) | __float_as_int(ddb.w);
    if (((grad_all_dy | grad_all_ddb) << 1) == 0)
        return; // All incoming gradients are +0/-0.

    // Fetch vertex indices.
    int vi0 = p.tri[triIdx * 3 + 0];
    int vi1 = p.tri[triIdx * 3 + 1];
    int vi2 = p.tri[triIdx * 3 + 2];

    // Bail out if vertex indices are corrupt.
    if (vi0 < 0 || vi0 >= p.numVertices ||
        vi1 < 0 || vi1 >= p.numVertices ||
        vi2 < 0 || vi2 >= p.numVertices)
        return;

    // In instance mode, adjust vertex indices by minibatch index.
    if (p.instance_mode)
    {
        vi0 += pz * p.numVertices;
        vi1 += pz * p.numVertices;
        vi2 += pz * p.numVertices;
    }

    // Initialize coalesced atomics.
    CA_SET_GROUP(triIdx);

    // Fetch vertex positions.
    float4 p0 = ((float4*)p.pos)[vi0];
    float4 p1 = ((float4*)p.pos)[vi1];
    float4 p2 = ((float4*)p.pos)[vi2];

    // Evaluate edge functions.
    float fx = p.xs * (float)px + p.xo;
    float fy = p.ys * (float)py + p.yo;
    float p0x = p0.x - fx * p0.w;
    float p0y = p0.y - fy * p0.w;
    float p1x = p1.x - fx * p1.w;
    float p1y = p1.y - fy * p1.w;
    float p2x = p2.x - fx * p2.w;
    float p2y = p2.y - fy * p2.w;
    float a0 = p1x*p2y - p1y*p2x;
    float a1 = p2x*p0y - p2y*p0x;
    float a2 = p0x*p1y - p0y*p1x;

    // Compute inverse area with epsilon.
    float at = a0 + a1 + a2;
    float ep = copysignf(1e-6f, at); // ~1 pixel in 1k x 1k image.
    float iw = 1.f / (at + ep);

    // Perspective correct, normalized barycentrics.
    float b0 = a0 * iw;
    float b1 = a1 * iw;

    // Position gradients.
    float gb0  = dy.x * iw;
    float gb1  = dy.y * iw;
    float gbb  = gb0 * b0 + gb1 * b1;
    float gp0x = gbb * (p2y - p1y) - gb1 * p2y;
    float gp1x = gbb * (p0y - p2y) + gb0 * p2y;
    float gp2x = gbb * (p1y - p0y) - gb0 * p1y + gb1 * p0y;
    float gp0y = gbb * (p1x - p2x) + gb1 * p2x;
    float gp1y = gbb * (p2x - p0x) - gb0 * p2x;
    float gp2y = gbb * (p0x - p1x) + gb0 * p1x - gb1 * p0x;
    float gp0w = -fx * gp0x - fy * gp0y;
    float gp1w = -fx * gp1x - fy * gp1y;
    float gp2w = -fx * gp2x - fy * gp2y;

    // Bary differential gradients.
    if (ENABLE_DB && ((grad_all_ddb) << 1) != 0)
    {
        float dfxdX = p.xs * iw;
        float dfydY = p.ys * iw;
        ddb.x *= dfxdX;
        ddb.y *= dfydY;
        ddb.z *= dfxdX;
        ddb.w *= dfydY;

        float da0dX = p1.y * p2.w - p2.y * p1.w;
        float da1dX = p2.y * p0.w - p0.y * p2.w;
        float da2dX = p0.y * p1.w - p1.y * p0.w;
        float da0dY = p2.x * p1.w - p1.x * p2.w;
        float da1dY = p0.x * p2.w - p2.x * p0.w;
        float da2dY = p1.x * p0.w - p0.x * p1.w;
        float datdX = da0dX + da1dX + da2dX;
        float datdY = da0dY + da1dY + da2dY;

        float x01 = p0.x - p1.x;
        float x12 = p1.x - p2.x;
        float x20 = p2.x - p0.x;
        float y01 = p0.y - p1.y;
        float y12 = p1.y - p2.y;
        float y20 = p2.y - p0.y;
        float w01 = p0.w - p1.w;
        float w12 = p1.w - p2.w;
        float w20 = p2.w - p0.w;

        float a0p1 = fy * p2.x - fx * p2.y;
        float a0p2 = fx * p1.y - fy * p1.x;
        float a1p0 = fx * p2.y - fy * p2.x;
        float a1p2 = fy * p0.x - fx * p0.y;

        float wdudX = 2.f * b0 * datdX - da0dX;
        float wdudY = 2.f * b0 * datdY - da0dY;
        float wdvdX = 2.f * b1 * datdX - da1dX;
        float wdvdY = 2.f * b1 * datdY - da1dY;

        float c0  = iw * (ddb.x * wdudX + ddb.y * wdudY + ddb.z * wdvdX + ddb.w * wdvdY);
        float cx  = c0 * fx - ddb.x * b0 - ddb.z * b1;
        float cy  = c0 * fy - ddb.y * b0 - ddb.w * b1;
        float cxy = iw * (ddb.x * datdX + ddb.y * datdY);
        float czw = iw * (ddb.z * datdX + ddb.w * datdY);

        gp0x += c0 * y12 - cy * w12              + czw * p2y                                               + ddb.w * p2.w;
        gp1x += c0 * y20 - cy * w20 - cxy * p2y                              - ddb.y * p2.w;
        gp2x += c0 * y01 - cy * w01 + cxy * p1y  - czw * p0y                 + ddb.y * p1.w                - ddb.w * p0.w;
        gp0y += cx * w12 - c0 * x12              - czw * p2x                                - ddb.z * p2.w;
        gp1y += cx * w20 - c0 * x20 + cxy * p2x               + ddb.x * p2.w;
        gp2y += cx * w01 - c0 * x01 - cxy * p1x  + czw * p0x  - ddb.x * p1.w                + ddb.z * p0.w;
        gp0w += cy * x12 - cx * y12              - czw * a1p0                               + ddb.z * p2.y - ddb.w * p2.x;
        gp1w += cy * x20 - cx * y20 - cxy * a0p1              - ddb.x * p2.y + ddb.y * p2.x;
        gp2w += cy * x01 - cx * y01 - cxy * a0p2 - czw * a1p2 + ddb.x * p1.y - ddb.y * p1.x - ddb.z * p0.y + ddb.w * p0.x;
    }

    // Accumulate using coalesced atomics.
    caAtomicAdd3_xyw(p.grad + 4 * vi0, gp0x, gp0y, gp0w);
    caAtomicAdd3_xyw(p.grad + 4 * vi1, gp1x, gp1y, gp1w);
    caAtomicAdd3_xyw(p.grad + 4 * vi2, gp2x, gp2y, gp2w);
}

// Template specializations.
__global__ void RasterizeGradKernel  (const RasterizeGradParams p) { RasterizeGradKernelTemplate<false>(p); }
__global__ void RasterizeGradKernelDb(const RasterizeGradParams p) { RasterizeGradKernelTemplate<true>(p); }

//------------------------------------------------------------------------