Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import functools | |
| import torch | |
| def assert_tensor_type(func): | |
| def wrapper(*args, **kwargs): | |
| if not isinstance(args[0].data, torch.Tensor): | |
| raise AttributeError( | |
| f'{args[0].__class__.__name__} has no attribute ' | |
| f'{func.__name__} for type {args[0].datatype}') | |
| return func(*args, **kwargs) | |
| return wrapper | |
| class DataContainer: | |
| """A container for any type of objects. | |
| Typically tensors will be stacked in the collate function and sliced along | |
| some dimension in the scatter function. This behavior has some limitations. | |
| 1. All tensors have to be the same size. | |
| 2. Types are limited (numpy array or Tensor). | |
| We design `DataContainer` and `MMDataParallel` to overcome these | |
| limitations. The behavior can be either of the following. | |
| - copy to GPU, pad all tensors to the same size and stack them | |
| - copy to GPU without stacking | |
| - leave the objects as is and pass it to the model | |
| - pad_dims specifies the number of last few dimensions to do padding | |
| """ | |
| def __init__(self, | |
| data, | |
| stack=False, | |
| padding_value=0, | |
| cpu_only=False, | |
| pad_dims=2): | |
| self._data = data | |
| self._cpu_only = cpu_only | |
| self._stack = stack | |
| self._padding_value = padding_value | |
| assert pad_dims in [None, 1, 2, 3] | |
| self._pad_dims = pad_dims | |
| def __repr__(self): | |
| return f'{self.__class__.__name__}({repr(self.data)})' | |
| def __len__(self): | |
| return len(self._data) | |
| def data(self): | |
| return self._data | |
| def datatype(self): | |
| if isinstance(self.data, torch.Tensor): | |
| return self.data.type() | |
| else: | |
| return type(self.data) | |
| def cpu_only(self): | |
| return self._cpu_only | |
| def stack(self): | |
| return self._stack | |
| def padding_value(self): | |
| return self._padding_value | |
| def pad_dims(self): | |
| return self._pad_dims | |
| def size(self, *args, **kwargs): | |
| return self.data.size(*args, **kwargs) | |
| def dim(self): | |
| return self.data.dim() | |