|
""" |
|
Utility classes and functions for the polynomial modules. |
|
|
|
This module provides: error and warning objects; a polynomial base class; |
|
and some routines used in both the `polynomial` and `chebyshev` modules. |
|
|
|
Warning objects |
|
--------------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
RankWarning raised in least-squares fit for rank-deficient matrix. |
|
|
|
Functions |
|
--------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
as_series convert list of array_likes into 1-D arrays of common type. |
|
trimseq remove trailing zeros. |
|
trimcoef remove small trailing coefficients. |
|
getdomain return the domain appropriate for a given set of abscissae. |
|
mapdomain maps points between domains. |
|
mapparms parameters of the linear map between domains. |
|
|
|
""" |
|
import operator |
|
import functools |
|
import warnings |
|
|
|
import numpy as np |
|
|
|
from numpy.core.multiarray import dragon4_positional, dragon4_scientific |
|
from numpy.core.umath import absolute |
|
|
|
__all__ = [ |
|
'RankWarning', 'as_series', 'trimseq', |
|
'trimcoef', 'getdomain', 'mapdomain', 'mapparms', |
|
'format_float'] |
|
|
|
|
|
|
|
|
|
|
|
class RankWarning(UserWarning): |
|
"""Issued by chebfit when the design matrix is rank deficient.""" |
|
pass |
|
|
|
|
|
|
|
|
|
def trimseq(seq): |
|
"""Remove small Poly series coefficients. |
|
|
|
Parameters |
|
---------- |
|
seq : sequence |
|
Sequence of Poly series coefficients. This routine fails for |
|
empty sequences. |
|
|
|
Returns |
|
------- |
|
series : sequence |
|
Subsequence with trailing zeros removed. If the resulting sequence |
|
would be empty, return the first element. The returned sequence may |
|
or may not be a view. |
|
|
|
Notes |
|
----- |
|
Do not lose the type info if the sequence contains unknown objects. |
|
|
|
""" |
|
if len(seq) == 0: |
|
return seq |
|
else: |
|
for i in range(len(seq) - 1, -1, -1): |
|
if seq[i] != 0: |
|
break |
|
return seq[:i+1] |
|
|
|
|
|
def as_series(alist, trim=True): |
|
""" |
|
Return argument as a list of 1-d arrays. |
|
|
|
The returned list contains array(s) of dtype double, complex double, or |
|
object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of |
|
size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays |
|
of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array |
|
raises a Value Error if it is not first reshaped into either a 1-d or 2-d |
|
array. |
|
|
|
Parameters |
|
---------- |
|
alist : array_like |
|
A 1- or 2-d array_like |
|
trim : boolean, optional |
|
When True, trailing zeros are removed from the inputs. |
|
When False, the inputs are passed through intact. |
|
|
|
Returns |
|
------- |
|
[a1, a2,...] : list of 1-D arrays |
|
A copy of the input data as a list of 1-d arrays. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
Raised when `as_series` cannot convert its input to 1-d arrays, or at |
|
least one of the resulting arrays is empty. |
|
|
|
Examples |
|
-------- |
|
>>> from numpy.polynomial import polyutils as pu |
|
>>> a = np.arange(4) |
|
>>> pu.as_series(a) |
|
[array([0.]), array([1.]), array([2.]), array([3.])] |
|
>>> b = np.arange(6).reshape((2,3)) |
|
>>> pu.as_series(b) |
|
[array([0., 1., 2.]), array([3., 4., 5.])] |
|
|
|
>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16))) |
|
[array([1.]), array([0., 1., 2.]), array([0., 1.])] |
|
|
|
>>> pu.as_series([2, [1.1, 0.]]) |
|
[array([2.]), array([1.1])] |
|
|
|
>>> pu.as_series([2, [1.1, 0.]], trim=False) |
|
[array([2.]), array([1.1, 0. ])] |
|
|
|
""" |
|
arrays = [np.array(a, ndmin=1, copy=False) for a in alist] |
|
if min([a.size for a in arrays]) == 0: |
|
raise ValueError("Coefficient array is empty") |
|
if any(a.ndim != 1 for a in arrays): |
|
raise ValueError("Coefficient array is not 1-d") |
|
if trim: |
|
arrays = [trimseq(a) for a in arrays] |
|
|
|
if any(a.dtype == np.dtype(object) for a in arrays): |
|
ret = [] |
|
for a in arrays: |
|
if a.dtype != np.dtype(object): |
|
tmp = np.empty(len(a), dtype=np.dtype(object)) |
|
tmp[:] = a[:] |
|
ret.append(tmp) |
|
else: |
|
ret.append(a.copy()) |
|
else: |
|
try: |
|
dtype = np.common_type(*arrays) |
|
except Exception as e: |
|
raise ValueError("Coefficient arrays have no common type") from e |
|
ret = [np.array(a, copy=True, dtype=dtype) for a in arrays] |
|
return ret |
|
|
|
|
|
def trimcoef(c, tol=0): |
|
""" |
|
Remove "small" "trailing" coefficients from a polynomial. |
|
|
|
"Small" means "small in absolute value" and is controlled by the |
|
parameter `tol`; "trailing" means highest order coefficient(s), e.g., in |
|
``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``) |
|
both the 3-rd and 4-th order coefficients would be "trimmed." |
|
|
|
Parameters |
|
---------- |
|
c : array_like |
|
1-d array of coefficients, ordered from lowest order to highest. |
|
tol : number, optional |
|
Trailing (i.e., highest order) elements with absolute value less |
|
than or equal to `tol` (default value is zero) are removed. |
|
|
|
Returns |
|
------- |
|
trimmed : ndarray |
|
1-d array with trailing zeros removed. If the resulting series |
|
would be empty, a series containing a single zero is returned. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If `tol` < 0 |
|
|
|
See Also |
|
-------- |
|
trimseq |
|
|
|
Examples |
|
-------- |
|
>>> from numpy.polynomial import polyutils as pu |
|
>>> pu.trimcoef((0,0,3,0,5,0,0)) |
|
array([0., 0., 3., 0., 5.]) |
|
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed |
|
array([0.]) |
|
>>> i = complex(0,1) # works for complex |
|
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3) |
|
array([0.0003+0.j , 0.001 -0.001j]) |
|
|
|
""" |
|
if tol < 0: |
|
raise ValueError("tol must be non-negative") |
|
|
|
[c] = as_series([c]) |
|
[ind] = np.nonzero(np.abs(c) > tol) |
|
if len(ind) == 0: |
|
return c[:1]*0 |
|
else: |
|
return c[:ind[-1] + 1].copy() |
|
|
|
def getdomain(x): |
|
""" |
|
Return a domain suitable for given abscissae. |
|
|
|
Find a domain suitable for a polynomial or Chebyshev series |
|
defined at the values supplied. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
1-d array of abscissae whose domain will be determined. |
|
|
|
Returns |
|
------- |
|
domain : ndarray |
|
1-d array containing two values. If the inputs are complex, then |
|
the two returned points are the lower left and upper right corners |
|
of the smallest rectangle (aligned with the axes) in the complex |
|
plane containing the points `x`. If the inputs are real, then the |
|
two points are the ends of the smallest interval containing the |
|
points `x`. |
|
|
|
See Also |
|
-------- |
|
mapparms, mapdomain |
|
|
|
Examples |
|
-------- |
|
>>> from numpy.polynomial import polyutils as pu |
|
>>> points = np.arange(4)**2 - 5; points |
|
array([-5, -4, -1, 4]) |
|
>>> pu.getdomain(points) |
|
array([-5., 4.]) |
|
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle |
|
>>> pu.getdomain(c) |
|
array([-1.-1.j, 1.+1.j]) |
|
|
|
""" |
|
[x] = as_series([x], trim=False) |
|
if x.dtype.char in np.typecodes['Complex']: |
|
rmin, rmax = x.real.min(), x.real.max() |
|
imin, imax = x.imag.min(), x.imag.max() |
|
return np.array((complex(rmin, imin), complex(rmax, imax))) |
|
else: |
|
return np.array((x.min(), x.max())) |
|
|
|
def mapparms(old, new): |
|
""" |
|
Linear map parameters between domains. |
|
|
|
Return the parameters of the linear map ``offset + scale*x`` that maps |
|
`old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``. |
|
|
|
Parameters |
|
---------- |
|
old, new : array_like |
|
Domains. Each domain must (successfully) convert to a 1-d array |
|
containing precisely two values. |
|
|
|
Returns |
|
------- |
|
offset, scale : scalars |
|
The map ``L(x) = offset + scale*x`` maps the first domain to the |
|
second. |
|
|
|
See Also |
|
-------- |
|
getdomain, mapdomain |
|
|
|
Notes |
|
----- |
|
Also works for complex numbers, and thus can be used to calculate the |
|
parameters required to map any line in the complex plane to any other |
|
line therein. |
|
|
|
Examples |
|
-------- |
|
>>> from numpy.polynomial import polyutils as pu |
|
>>> pu.mapparms((-1,1),(-1,1)) |
|
(0.0, 1.0) |
|
>>> pu.mapparms((1,-1),(-1,1)) |
|
(-0.0, -1.0) |
|
>>> i = complex(0,1) |
|
>>> pu.mapparms((-i,-1),(1,i)) |
|
((1+1j), (1-0j)) |
|
|
|
""" |
|
oldlen = old[1] - old[0] |
|
newlen = new[1] - new[0] |
|
off = (old[1]*new[0] - old[0]*new[1])/oldlen |
|
scl = newlen/oldlen |
|
return off, scl |
|
|
|
def mapdomain(x, old, new): |
|
""" |
|
Apply linear map to input points. |
|
|
|
The linear map ``offset + scale*x`` that maps the domain `old` to |
|
the domain `new` is applied to the points `x`. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
Points to be mapped. If `x` is a subtype of ndarray the subtype |
|
will be preserved. |
|
old, new : array_like |
|
The two domains that determine the map. Each must (successfully) |
|
convert to 1-d arrays containing precisely two values. |
|
|
|
Returns |
|
------- |
|
x_out : ndarray |
|
Array of points of the same shape as `x`, after application of the |
|
linear map between the two domains. |
|
|
|
See Also |
|
-------- |
|
getdomain, mapparms |
|
|
|
Notes |
|
----- |
|
Effectively, this implements: |
|
|
|
.. math:: |
|
x\\_out = new[0] + m(x - old[0]) |
|
|
|
where |
|
|
|
.. math:: |
|
m = \\frac{new[1]-new[0]}{old[1]-old[0]} |
|
|
|
Examples |
|
-------- |
|
>>> from numpy.polynomial import polyutils as pu |
|
>>> old_domain = (-1,1) |
|
>>> new_domain = (0,2*np.pi) |
|
>>> x = np.linspace(-1,1,6); x |
|
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ]) |
|
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out |
|
array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary |
|
6.28318531]) |
|
>>> x - pu.mapdomain(x_out, new_domain, old_domain) |
|
array([0., 0., 0., 0., 0., 0.]) |
|
|
|
Also works for complex numbers (and thus can be used to map any line in |
|
the complex plane to any other line therein). |
|
|
|
>>> i = complex(0,1) |
|
>>> old = (-1 - i, 1 + i) |
|
>>> new = (-1 + i, 1 - i) |
|
>>> z = np.linspace(old[0], old[1], 6); z |
|
array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ]) |
|
>>> new_z = pu.mapdomain(z, old, new); new_z |
|
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary |
|
|
|
""" |
|
x = np.asanyarray(x) |
|
off, scl = mapparms(old, new) |
|
return off + scl*x |
|
|
|
|
|
def _nth_slice(i, ndim): |
|
sl = [np.newaxis] * ndim |
|
sl[i] = slice(None) |
|
return tuple(sl) |
|
|
|
|
|
def _vander_nd(vander_fs, points, degrees): |
|
r""" |
|
A generalization of the Vandermonde matrix for N dimensions |
|
|
|
The result is built by combining the results of 1d Vandermonde matrices, |
|
|
|
.. math:: |
|
W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]} |
|
|
|
where |
|
|
|
.. math:: |
|
N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\ |
|
M &= \texttt{points[k].ndim} \\ |
|
V_k &= \texttt{vander\_fs[k]} \\ |
|
x_k &= \texttt{points[k]} \\ |
|
0 \le j_k &\le \texttt{degrees[k]} |
|
|
|
Expanding the one-dimensional :math:`V_k` functions gives: |
|
|
|
.. math:: |
|
W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])} |
|
|
|
where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along |
|
dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`. |
|
|
|
Parameters |
|
---------- |
|
vander_fs : Sequence[function(array_like, int) -> ndarray] |
|
The 1d vander function to use for each axis, such as ``polyvander`` |
|
points : Sequence[array_like] |
|
Arrays of point coordinates, all of the same shape. The dtypes |
|
will be converted to either float64 or complex128 depending on |
|
whether any of the elements are complex. Scalars are converted to |
|
1-D arrays. |
|
This must be the same length as `vander_fs`. |
|
degrees : Sequence[int] |
|
The maximum degree (inclusive) to use for each axis. |
|
This must be the same length as `vander_fs`. |
|
|
|
Returns |
|
------- |
|
vander_nd : ndarray |
|
An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``. |
|
""" |
|
n_dims = len(vander_fs) |
|
if n_dims != len(points): |
|
raise ValueError( |
|
f"Expected {n_dims} dimensions of sample points, got {len(points)}") |
|
if n_dims != len(degrees): |
|
raise ValueError( |
|
f"Expected {n_dims} dimensions of degrees, got {len(degrees)}") |
|
if n_dims == 0: |
|
raise ValueError("Unable to guess a dtype or shape when no points are given") |
|
|
|
|
|
points = tuple(np.array(tuple(points), copy=False) + 0.0) |
|
|
|
|
|
|
|
vander_arrays = ( |
|
vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)] |
|
for i in range(n_dims) |
|
) |
|
|
|
|
|
return functools.reduce(operator.mul, vander_arrays) |
|
|
|
|
|
def _vander_nd_flat(vander_fs, points, degrees): |
|
""" |
|
Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis |
|
|
|
Used to implement the public ``<type>vander<n>d`` functions. |
|
""" |
|
v = _vander_nd(vander_fs, points, degrees) |
|
return v.reshape(v.shape[:-len(degrees)] + (-1,)) |
|
|
|
|
|
def _fromroots(line_f, mul_f, roots): |
|
""" |
|
Helper function used to implement the ``<type>fromroots`` functions. |
|
|
|
Parameters |
|
---------- |
|
line_f : function(float, float) -> ndarray |
|
The ``<type>line`` function, such as ``polyline`` |
|
mul_f : function(array_like, array_like) -> ndarray |
|
The ``<type>mul`` function, such as ``polymul`` |
|
roots |
|
See the ``<type>fromroots`` functions for more detail |
|
""" |
|
if len(roots) == 0: |
|
return np.ones(1) |
|
else: |
|
[roots] = as_series([roots], trim=False) |
|
roots.sort() |
|
p = [line_f(-r, 1) for r in roots] |
|
n = len(p) |
|
while n > 1: |
|
m, r = divmod(n, 2) |
|
tmp = [mul_f(p[i], p[i+m]) for i in range(m)] |
|
if r: |
|
tmp[0] = mul_f(tmp[0], p[-1]) |
|
p = tmp |
|
n = m |
|
return p[0] |
|
|
|
|
|
def _valnd(val_f, c, *args): |
|
""" |
|
Helper function used to implement the ``<type>val<n>d`` functions. |
|
|
|
Parameters |
|
---------- |
|
val_f : function(array_like, array_like, tensor: bool) -> array_like |
|
The ``<type>val`` function, such as ``polyval`` |
|
c, args |
|
See the ``<type>val<n>d`` functions for more detail |
|
""" |
|
args = [np.asanyarray(a) for a in args] |
|
shape0 = args[0].shape |
|
if not all((a.shape == shape0 for a in args[1:])): |
|
if len(args) == 3: |
|
raise ValueError('x, y, z are incompatible') |
|
elif len(args) == 2: |
|
raise ValueError('x, y are incompatible') |
|
else: |
|
raise ValueError('ordinates are incompatible') |
|
it = iter(args) |
|
x0 = next(it) |
|
|
|
|
|
c = val_f(x0, c) |
|
for xi in it: |
|
c = val_f(xi, c, tensor=False) |
|
return c |
|
|
|
|
|
def _gridnd(val_f, c, *args): |
|
""" |
|
Helper function used to implement the ``<type>grid<n>d`` functions. |
|
|
|
Parameters |
|
---------- |
|
val_f : function(array_like, array_like, tensor: bool) -> array_like |
|
The ``<type>val`` function, such as ``polyval`` |
|
c, args |
|
See the ``<type>grid<n>d`` functions for more detail |
|
""" |
|
for xi in args: |
|
c = val_f(xi, c) |
|
return c |
|
|
|
|
|
def _div(mul_f, c1, c2): |
|
""" |
|
Helper function used to implement the ``<type>div`` functions. |
|
|
|
Implementation uses repeated subtraction of c2 multiplied by the nth basis. |
|
For some polynomial types, a more efficient approach may be possible. |
|
|
|
Parameters |
|
---------- |
|
mul_f : function(array_like, array_like) -> array_like |
|
The ``<type>mul`` function, such as ``polymul`` |
|
c1, c2 |
|
See the ``<type>div`` functions for more detail |
|
""" |
|
|
|
[c1, c2] = as_series([c1, c2]) |
|
if c2[-1] == 0: |
|
raise ZeroDivisionError() |
|
|
|
lc1 = len(c1) |
|
lc2 = len(c2) |
|
if lc1 < lc2: |
|
return c1[:1]*0, c1 |
|
elif lc2 == 1: |
|
return c1/c2[-1], c1[:1]*0 |
|
else: |
|
quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype) |
|
rem = c1 |
|
for i in range(lc1 - lc2, - 1, -1): |
|
p = mul_f([0]*i + [1], c2) |
|
q = rem[-1]/p[-1] |
|
rem = rem[:-1] - q*p[:-1] |
|
quo[i] = q |
|
return quo, trimseq(rem) |
|
|
|
|
|
def _add(c1, c2): |
|
""" Helper function used to implement the ``<type>add`` functions. """ |
|
|
|
[c1, c2] = as_series([c1, c2]) |
|
if len(c1) > len(c2): |
|
c1[:c2.size] += c2 |
|
ret = c1 |
|
else: |
|
c2[:c1.size] += c1 |
|
ret = c2 |
|
return trimseq(ret) |
|
|
|
|
|
def _sub(c1, c2): |
|
""" Helper function used to implement the ``<type>sub`` functions. """ |
|
|
|
[c1, c2] = as_series([c1, c2]) |
|
if len(c1) > len(c2): |
|
c1[:c2.size] -= c2 |
|
ret = c1 |
|
else: |
|
c2 = -c2 |
|
c2[:c1.size] += c1 |
|
ret = c2 |
|
return trimseq(ret) |
|
|
|
|
|
def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None): |
|
""" |
|
Helper function used to implement the ``<type>fit`` functions. |
|
|
|
Parameters |
|
---------- |
|
vander_f : function(array_like, int) -> ndarray |
|
The 1d vander function, such as ``polyvander`` |
|
c1, c2 |
|
See the ``<type>fit`` functions for more detail |
|
""" |
|
x = np.asarray(x) + 0.0 |
|
y = np.asarray(y) + 0.0 |
|
deg = np.asarray(deg) |
|
|
|
|
|
if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: |
|
raise TypeError("deg must be an int or non-empty 1-D array of int") |
|
if deg.min() < 0: |
|
raise ValueError("expected deg >= 0") |
|
if x.ndim != 1: |
|
raise TypeError("expected 1D vector for x") |
|
if x.size == 0: |
|
raise TypeError("expected non-empty vector for x") |
|
if y.ndim < 1 or y.ndim > 2: |
|
raise TypeError("expected 1D or 2D array for y") |
|
if len(x) != len(y): |
|
raise TypeError("expected x and y to have same length") |
|
|
|
if deg.ndim == 0: |
|
lmax = deg |
|
order = lmax + 1 |
|
van = vander_f(x, lmax) |
|
else: |
|
deg = np.sort(deg) |
|
lmax = deg[-1] |
|
order = len(deg) |
|
van = vander_f(x, lmax)[:, deg] |
|
|
|
|
|
lhs = van.T |
|
rhs = y.T |
|
if w is not None: |
|
w = np.asarray(w) + 0.0 |
|
if w.ndim != 1: |
|
raise TypeError("expected 1D vector for w") |
|
if len(x) != len(w): |
|
raise TypeError("expected x and w to have same length") |
|
|
|
|
|
lhs = lhs * w |
|
rhs = rhs * w |
|
|
|
|
|
if rcond is None: |
|
rcond = len(x)*np.finfo(x.dtype).eps |
|
|
|
|
|
if issubclass(lhs.dtype.type, np.complexfloating): |
|
scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1)) |
|
else: |
|
scl = np.sqrt(np.square(lhs).sum(1)) |
|
scl[scl == 0] = 1 |
|
|
|
|
|
c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond) |
|
c = (c.T/scl).T |
|
|
|
|
|
if deg.ndim > 0: |
|
if c.ndim == 2: |
|
cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype) |
|
else: |
|
cc = np.zeros(lmax+1, dtype=c.dtype) |
|
cc[deg] = c |
|
c = cc |
|
|
|
|
|
if rank != order and not full: |
|
msg = "The fit may be poorly conditioned" |
|
warnings.warn(msg, RankWarning, stacklevel=2) |
|
|
|
if full: |
|
return c, [resids, rank, s, rcond] |
|
else: |
|
return c |
|
|
|
|
|
def _pow(mul_f, c, pow, maxpower): |
|
""" |
|
Helper function used to implement the ``<type>pow`` functions. |
|
|
|
Parameters |
|
---------- |
|
mul_f : function(array_like, array_like) -> ndarray |
|
The ``<type>mul`` function, such as ``polymul`` |
|
c : array_like |
|
1-D array of array of series coefficients |
|
pow, maxpower |
|
See the ``<type>pow`` functions for more detail |
|
""" |
|
|
|
[c] = as_series([c]) |
|
power = int(pow) |
|
if power != pow or power < 0: |
|
raise ValueError("Power must be a non-negative integer.") |
|
elif maxpower is not None and power > maxpower: |
|
raise ValueError("Power is too large") |
|
elif power == 0: |
|
return np.array([1], dtype=c.dtype) |
|
elif power == 1: |
|
return c |
|
else: |
|
|
|
|
|
prd = c |
|
for i in range(2, power + 1): |
|
prd = mul_f(prd, c) |
|
return prd |
|
|
|
|
|
def _deprecate_as_int(x, desc): |
|
""" |
|
Like `operator.index`, but emits a deprecation warning when passed a float |
|
|
|
Parameters |
|
---------- |
|
x : int-like, or float with integral value |
|
Value to interpret as an integer |
|
desc : str |
|
description to include in any error message |
|
|
|
Raises |
|
------ |
|
TypeError : if x is a non-integral float or non-numeric |
|
DeprecationWarning : if x is an integral float |
|
""" |
|
try: |
|
return operator.index(x) |
|
except TypeError as e: |
|
|
|
try: |
|
ix = int(x) |
|
except TypeError: |
|
pass |
|
else: |
|
if ix == x: |
|
warnings.warn( |
|
f"In future, this will raise TypeError, as {desc} will " |
|
"need to be an integer not just an integral float.", |
|
DeprecationWarning, |
|
stacklevel=3 |
|
) |
|
return ix |
|
|
|
raise TypeError(f"{desc} must be an integer") from e |
|
|
|
|
|
def format_float(x, parens=False): |
|
if not np.issubdtype(type(x), np.floating): |
|
return str(x) |
|
|
|
opts = np.get_printoptions() |
|
|
|
if np.isnan(x): |
|
return opts['nanstr'] |
|
elif np.isinf(x): |
|
return opts['infstr'] |
|
|
|
exp_format = False |
|
if x != 0: |
|
a = absolute(x) |
|
if a >= 1.e8 or a < 10**min(0, -(opts['precision']-1)//2): |
|
exp_format = True |
|
|
|
trim, unique = '0', True |
|
if opts['floatmode'] == 'fixed': |
|
trim, unique = 'k', False |
|
|
|
if exp_format: |
|
s = dragon4_scientific(x, precision=opts['precision'], |
|
unique=unique, trim=trim, |
|
sign=opts['sign'] == '+') |
|
if parens: |
|
s = '(' + s + ')' |
|
else: |
|
s = dragon4_positional(x, precision=opts['precision'], |
|
fractional=True, |
|
unique=unique, trim=trim, |
|
sign=opts['sign'] == '+') |
|
return s |
|
|