|
""" |
|
Mesh refinement for triangular grids. |
|
""" |
|
|
|
import numpy as np |
|
|
|
from matplotlib import _api |
|
from matplotlib.tri._triangulation import Triangulation |
|
import matplotlib.tri._triinterpolate |
|
|
|
|
|
class TriRefiner: |
|
""" |
|
Abstract base class for classes implementing mesh refinement. |
|
|
|
A TriRefiner encapsulates a Triangulation object and provides tools for |
|
mesh refinement and interpolation. |
|
|
|
Derived classes must implement: |
|
|
|
- ``refine_triangulation(return_tri_index=False, **kwargs)`` , where |
|
the optional keyword arguments *kwargs* are defined in each |
|
TriRefiner concrete implementation, and which returns: |
|
|
|
- a refined triangulation, |
|
- optionally (depending on *return_tri_index*), for each |
|
point of the refined triangulation: the index of |
|
the initial triangulation triangle to which it belongs. |
|
|
|
- ``refine_field(z, triinterpolator=None, **kwargs)``, where: |
|
|
|
- *z* array of field values (to refine) defined at the base |
|
triangulation nodes, |
|
- *triinterpolator* is an optional `~matplotlib.tri.TriInterpolator`, |
|
- the other optional keyword arguments *kwargs* are defined in |
|
each TriRefiner concrete implementation; |
|
|
|
and which returns (as a tuple) a refined triangular mesh and the |
|
interpolated values of the field at the refined triangulation nodes. |
|
""" |
|
|
|
def __init__(self, triangulation): |
|
_api.check_isinstance(Triangulation, triangulation=triangulation) |
|
self._triangulation = triangulation |
|
|
|
|
|
class UniformTriRefiner(TriRefiner): |
|
""" |
|
Uniform mesh refinement by recursive subdivisions. |
|
|
|
Parameters |
|
---------- |
|
triangulation : `~matplotlib.tri.Triangulation` |
|
The encapsulated triangulation (to be refined) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, triangulation): |
|
super().__init__(triangulation) |
|
|
|
def refine_triangulation(self, return_tri_index=False, subdiv=3): |
|
""" |
|
Compute a uniformly refined triangulation *refi_triangulation* of |
|
the encapsulated :attr:`triangulation`. |
|
|
|
This function refines the encapsulated triangulation by splitting each |
|
father triangle into 4 child sub-triangles built on the edges midside |
|
nodes, recursing *subdiv* times. In the end, each triangle is hence |
|
divided into ``4**subdiv`` child triangles. |
|
|
|
Parameters |
|
---------- |
|
return_tri_index : bool, default: False |
|
Whether an index table indicating the father triangle index of each |
|
point is returned. |
|
subdiv : int, default: 3 |
|
Recursion level for the subdivision. |
|
Each triangle is divided into ``4**subdiv`` child triangles; |
|
hence, the default results in 64 refined subtriangles for each |
|
triangle of the initial triangulation. |
|
|
|
Returns |
|
------- |
|
refi_triangulation : `~matplotlib.tri.Triangulation` |
|
The refined triangulation. |
|
found_index : int array |
|
Index of the initial triangulation containing triangle, for each |
|
point of *refi_triangulation*. |
|
Returned only if *return_tri_index* is set to True. |
|
""" |
|
refi_triangulation = self._triangulation |
|
ntri = refi_triangulation.triangles.shape[0] |
|
|
|
|
|
|
|
ancestors = np.arange(ntri, dtype=np.int32) |
|
for _ in range(subdiv): |
|
refi_triangulation, ancestors = self._refine_triangulation_once( |
|
refi_triangulation, ancestors) |
|
refi_npts = refi_triangulation.x.shape[0] |
|
refi_triangles = refi_triangulation.triangles |
|
|
|
|
|
if return_tri_index: |
|
|
|
|
|
|
|
found_index = np.full(refi_npts, -1, dtype=np.int32) |
|
tri_mask = self._triangulation.mask |
|
if tri_mask is None: |
|
found_index[refi_triangles] = np.repeat(ancestors, |
|
3).reshape(-1, 3) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
ancestor_mask = tri_mask[ancestors] |
|
found_index[refi_triangles[ancestor_mask, :] |
|
] = np.repeat(ancestors[ancestor_mask], |
|
3).reshape(-1, 3) |
|
found_index[refi_triangles[~ancestor_mask, :] |
|
] = np.repeat(ancestors[~ancestor_mask], |
|
3).reshape(-1, 3) |
|
return refi_triangulation, found_index |
|
else: |
|
return refi_triangulation |
|
|
|
def refine_field(self, z, triinterpolator=None, subdiv=3): |
|
""" |
|
Refine a field defined on the encapsulated triangulation. |
|
|
|
Parameters |
|
---------- |
|
z : (npoints,) array-like |
|
Values of the field to refine, defined at the nodes of the |
|
encapsulated triangulation. (``n_points`` is the number of points |
|
in the initial triangulation) |
|
triinterpolator : `~matplotlib.tri.TriInterpolator`, optional |
|
Interpolator used for field interpolation. If not specified, |
|
a `~matplotlib.tri.CubicTriInterpolator` will be used. |
|
subdiv : int, default: 3 |
|
Recursion level for the subdivision. |
|
Each triangle is divided into ``4**subdiv`` child triangles. |
|
|
|
Returns |
|
------- |
|
refi_tri : `~matplotlib.tri.Triangulation` |
|
The returned refined triangulation. |
|
refi_z : 1D array of length: *refi_tri* node count. |
|
The returned interpolated field (at *refi_tri* nodes). |
|
""" |
|
if triinterpolator is None: |
|
interp = matplotlib.tri.CubicTriInterpolator( |
|
self._triangulation, z) |
|
else: |
|
_api.check_isinstance(matplotlib.tri.TriInterpolator, |
|
triinterpolator=triinterpolator) |
|
interp = triinterpolator |
|
|
|
refi_tri, found_index = self.refine_triangulation( |
|
subdiv=subdiv, return_tri_index=True) |
|
refi_z = interp._interpolate_multikeys( |
|
refi_tri.x, refi_tri.y, tri_index=found_index)[0] |
|
return refi_tri, refi_z |
|
|
|
@staticmethod |
|
def _refine_triangulation_once(triangulation, ancestors=None): |
|
""" |
|
Refine a `.Triangulation` by splitting each triangle into 4 |
|
child-masked_triangles built on the edges midside nodes. |
|
|
|
Masked triangles, if present, are also split, but their children |
|
returned masked. |
|
|
|
If *ancestors* is not provided, returns only a new triangulation: |
|
child_triangulation. |
|
|
|
If the array-like key table *ancestor* is given, it shall be of shape |
|
(ntri,) where ntri is the number of *triangulation* masked_triangles. |
|
In this case, the function returns |
|
(child_triangulation, child_ancestors) |
|
child_ancestors is defined so that the 4 child masked_triangles share |
|
the same index as their father: child_ancestors.shape = (4 * ntri,). |
|
""" |
|
|
|
x = triangulation.x |
|
y = triangulation.y |
|
|
|
|
|
|
|
|
|
|
|
neighbors = triangulation.neighbors |
|
triangles = triangulation.triangles |
|
npts = np.shape(x)[0] |
|
ntri = np.shape(triangles)[0] |
|
if ancestors is not None: |
|
ancestors = np.asarray(ancestors) |
|
if np.shape(ancestors) != (ntri,): |
|
raise ValueError( |
|
"Incompatible shapes provide for " |
|
"triangulation.masked_triangles and ancestors: " |
|
f"{np.shape(triangles)} and {np.shape(ancestors)}") |
|
|
|
|
|
|
|
|
|
borders = np.sum(neighbors == -1) |
|
added_pts = (3*ntri + borders) // 2 |
|
refi_npts = npts + added_pts |
|
refi_x = np.zeros(refi_npts) |
|
refi_y = np.zeros(refi_npts) |
|
|
|
|
|
refi_x[:npts] = x |
|
refi_y[:npts] = y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
edge_elems = np.tile(np.arange(ntri, dtype=np.int32), 3) |
|
edge_apexes = np.repeat(np.arange(3, dtype=np.int32), ntri) |
|
edge_neighbors = neighbors[edge_elems, edge_apexes] |
|
mask_masters = (edge_elems > edge_neighbors) |
|
|
|
|
|
masters = edge_elems[mask_masters] |
|
apex_masters = edge_apexes[mask_masters] |
|
x_add = (x[triangles[masters, apex_masters]] + |
|
x[triangles[masters, (apex_masters+1) % 3]]) * 0.5 |
|
y_add = (y[triangles[masters, apex_masters]] + |
|
y[triangles[masters, (apex_masters+1) % 3]]) * 0.5 |
|
refi_x[npts:] = x_add |
|
refi_y[npts:] = y_add |
|
|
|
|
|
|
|
|
|
|
|
new_pt_corner = triangles |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_pt_midside = np.empty([ntri, 3], dtype=np.int32) |
|
cum_sum = npts |
|
for imid in range(3): |
|
mask_st_loc = (imid == apex_masters) |
|
n_masters_loc = np.sum(mask_st_loc) |
|
elem_masters_loc = masters[mask_st_loc] |
|
new_pt_midside[:, imid][elem_masters_loc] = np.arange( |
|
n_masters_loc, dtype=np.int32) + cum_sum |
|
cum_sum += n_masters_loc |
|
|
|
|
|
|
|
|
|
|
|
mask_slaves = np.logical_not(mask_masters) |
|
slaves = edge_elems[mask_slaves] |
|
slaves_masters = edge_neighbors[mask_slaves] |
|
diff_table = np.abs(neighbors[slaves_masters, :] - |
|
np.outer(slaves, np.ones(3, dtype=np.int32))) |
|
slave_masters_apex = np.argmin(diff_table, axis=1) |
|
slaves_apex = edge_apexes[mask_slaves] |
|
new_pt_midside[slaves, slaves_apex] = new_pt_midside[ |
|
slaves_masters, slave_masters_apex] |
|
|
|
|
|
child_triangles = np.empty([ntri*4, 3], dtype=np.int32) |
|
child_triangles[0::4, :] = np.vstack([ |
|
new_pt_corner[:, 0], new_pt_midside[:, 0], |
|
new_pt_midside[:, 2]]).T |
|
child_triangles[1::4, :] = np.vstack([ |
|
new_pt_corner[:, 1], new_pt_midside[:, 1], |
|
new_pt_midside[:, 0]]).T |
|
child_triangles[2::4, :] = np.vstack([ |
|
new_pt_corner[:, 2], new_pt_midside[:, 2], |
|
new_pt_midside[:, 1]]).T |
|
child_triangles[3::4, :] = np.vstack([ |
|
new_pt_midside[:, 0], new_pt_midside[:, 1], |
|
new_pt_midside[:, 2]]).T |
|
child_triangulation = Triangulation(refi_x, refi_y, child_triangles) |
|
|
|
|
|
if triangulation.mask is not None: |
|
child_triangulation.set_mask(np.repeat(triangulation.mask, 4)) |
|
|
|
if ancestors is None: |
|
return child_triangulation |
|
else: |
|
return child_triangulation, np.repeat(ancestors, 4) |
|
|