|
""" |
|
Interpolation inside triangular grids. |
|
""" |
|
|
|
import numpy as np |
|
|
|
from matplotlib import _api |
|
from matplotlib.tri import Triangulation |
|
from matplotlib.tri._trifinder import TriFinder |
|
from matplotlib.tri._tritools import TriAnalyzer |
|
|
|
__all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator') |
|
|
|
|
|
class TriInterpolator: |
|
""" |
|
Abstract base class for classes used to interpolate on a triangular grid. |
|
|
|
Derived classes implement the following methods: |
|
|
|
- ``__call__(x, y)``, |
|
where x, y are array-like point coordinates of the same shape, and |
|
that returns a masked array of the same shape containing the |
|
interpolated z-values. |
|
|
|
- ``gradient(x, y)``, |
|
where x, y are array-like point coordinates of the same |
|
shape, and that returns a list of 2 masked arrays of the same shape |
|
containing the 2 derivatives of the interpolator (derivatives of |
|
interpolated z values with respect to x and y). |
|
""" |
|
|
|
def __init__(self, triangulation, z, trifinder=None): |
|
_api.check_isinstance(Triangulation, triangulation=triangulation) |
|
self._triangulation = triangulation |
|
|
|
self._z = np.asarray(z) |
|
if self._z.shape != self._triangulation.x.shape: |
|
raise ValueError("z array must have same length as triangulation x" |
|
" and y arrays") |
|
|
|
_api.check_isinstance((TriFinder, None), trifinder=trifinder) |
|
self._trifinder = trifinder or self._triangulation.get_trifinder() |
|
|
|
|
|
|
|
|
|
|
|
self._unit_x = 1.0 |
|
self._unit_y = 1.0 |
|
|
|
|
|
|
|
|
|
|
|
self._tri_renum = None |
|
|
|
|
|
|
|
|
|
|
|
_docstring__call__ = """ |
|
Returns a masked array containing interpolated values at the specified |
|
(x, y) points. |
|
|
|
Parameters |
|
---------- |
|
x, y : array-like |
|
x and y coordinates of the same shape and any number of |
|
dimensions. |
|
|
|
Returns |
|
------- |
|
np.ma.array |
|
Masked array of the same shape as *x* and *y*; values corresponding |
|
to (*x*, *y*) points outside of the triangulation are masked out. |
|
|
|
""" |
|
|
|
_docstringgradient = r""" |
|
Returns a list of 2 masked arrays containing interpolated derivatives |
|
at the specified (x, y) points. |
|
|
|
Parameters |
|
---------- |
|
x, y : array-like |
|
x and y coordinates of the same shape and any number of |
|
dimensions. |
|
|
|
Returns |
|
------- |
|
dzdx, dzdy : np.ma.array |
|
2 masked arrays of the same shape as *x* and *y*; values |
|
corresponding to (x, y) points outside of the triangulation |
|
are masked out. |
|
The first returned array contains the values of |
|
:math:`\frac{\partial z}{\partial x}` and the second those of |
|
:math:`\frac{\partial z}{\partial y}`. |
|
|
|
""" |
|
|
|
def _interpolate_multikeys(self, x, y, tri_index=None, |
|
return_keys=('z',)): |
|
""" |
|
Versatile (private) method defined for all TriInterpolators. |
|
|
|
:meth:`_interpolate_multikeys` is a wrapper around method |
|
:meth:`_interpolate_single_key` (to be defined in the child |
|
subclasses). |
|
:meth:`_interpolate_single_key actually performs the interpolation, |
|
but only for 1-dimensional inputs and at valid locations (inside |
|
unmasked triangles of the triangulation). |
|
|
|
The purpose of :meth:`_interpolate_multikeys` is to implement the |
|
following common tasks needed in all subclasses implementations: |
|
|
|
- calculation of containing triangles |
|
- dealing with more than one interpolation request at the same |
|
location (e.g., if the 2 derivatives are requested, it is |
|
unnecessary to compute the containing triangles twice) |
|
- scaling according to self._unit_x, self._unit_y |
|
- dealing with points outside of the grid (with fill value np.nan) |
|
- dealing with multi-dimensional *x*, *y* arrays: flattening for |
|
:meth:`_interpolate_params` call and final reshaping. |
|
|
|
(Note that np.vectorize could do most of those things very well for |
|
you, but it does it by function evaluations over successive tuples of |
|
the input arrays. Therefore, this tends to be more time-consuming than |
|
using optimized numpy functions - e.g., np.dot - which can be used |
|
easily on the flattened inputs, in the child-subclass methods |
|
:meth:`_interpolate_single_key`.) |
|
|
|
It is guaranteed that the calls to :meth:`_interpolate_single_key` |
|
will be done with flattened (1-d) array-like input parameters *x*, *y* |
|
and with flattened, valid `tri_index` arrays (no -1 index allowed). |
|
|
|
Parameters |
|
---------- |
|
x, y : array-like |
|
x and y coordinates where interpolated values are requested. |
|
tri_index : array-like of int, optional |
|
Array of the containing triangle indices, same shape as |
|
*x* and *y*. Defaults to None. If None, these indices |
|
will be computed by a TriFinder instance. |
|
(Note: For point outside the grid, tri_index[ipt] shall be -1). |
|
return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'} |
|
Defines the interpolation arrays to return, and in which order. |
|
|
|
Returns |
|
------- |
|
list of arrays |
|
Each array-like contains the expected interpolated values in the |
|
order defined by *return_keys* parameter. |
|
""" |
|
|
|
|
|
x = np.asarray(x, dtype=np.float64) |
|
y = np.asarray(y, dtype=np.float64) |
|
sh_ret = x.shape |
|
if x.shape != y.shape: |
|
raise ValueError("x and y shall have same shapes." |
|
f" Given: {x.shape} and {y.shape}") |
|
x = np.ravel(x) |
|
y = np.ravel(y) |
|
x_scaled = x/self._unit_x |
|
y_scaled = y/self._unit_y |
|
size_ret = np.size(x_scaled) |
|
|
|
|
|
if tri_index is None: |
|
tri_index = self._trifinder(x, y) |
|
else: |
|
if tri_index.shape != sh_ret: |
|
raise ValueError( |
|
"tri_index array is provided and shall" |
|
" have same shape as x and y. Given: " |
|
f"{tri_index.shape} and {sh_ret}") |
|
tri_index = np.ravel(tri_index) |
|
|
|
mask_in = (tri_index != -1) |
|
if self._tri_renum is None: |
|
valid_tri_index = tri_index[mask_in] |
|
else: |
|
valid_tri_index = self._tri_renum[tri_index[mask_in]] |
|
valid_x = x_scaled[mask_in] |
|
valid_y = y_scaled[mask_in] |
|
|
|
ret = [] |
|
for return_key in return_keys: |
|
|
|
try: |
|
return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key] |
|
except KeyError as err: |
|
raise ValueError("return_keys items shall take values in" |
|
" {'z', 'dzdx', 'dzdy'}") from err |
|
|
|
|
|
scale = [1., 1./self._unit_x, 1./self._unit_y][return_index] |
|
|
|
|
|
ret_loc = np.empty(size_ret, dtype=np.float64) |
|
ret_loc[~mask_in] = np.nan |
|
ret_loc[mask_in] = self._interpolate_single_key( |
|
return_key, valid_tri_index, valid_x, valid_y) * scale |
|
ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)] |
|
|
|
return ret |
|
|
|
def _interpolate_single_key(self, return_key, tri_index, x, y): |
|
""" |
|
Interpolate at points belonging to the triangulation |
|
(inside an unmasked triangles). |
|
|
|
Parameters |
|
---------- |
|
return_key : {'z', 'dzdx', 'dzdy'} |
|
The requested values (z or its derivatives). |
|
tri_index : 1D int array |
|
Valid triangle index (cannot be -1). |
|
x, y : 1D arrays, same shape as `tri_index` |
|
Valid locations where interpolation is requested. |
|
|
|
Returns |
|
------- |
|
1-d array |
|
Returned array of the same size as *tri_index* |
|
""" |
|
raise NotImplementedError("TriInterpolator subclasses" + |
|
"should implement _interpolate_single_key!") |
|
|
|
|
|
class LinearTriInterpolator(TriInterpolator): |
|
""" |
|
Linear interpolator on a triangular grid. |
|
|
|
Each triangle is represented by a plane so that an interpolated value at |
|
point (x, y) lies on the plane of the triangle containing (x, y). |
|
Interpolated values are therefore continuous across the triangulation, but |
|
their first derivatives are discontinuous at edges between triangles. |
|
|
|
Parameters |
|
---------- |
|
triangulation : `~matplotlib.tri.Triangulation` |
|
The triangulation to interpolate over. |
|
z : (npoints,) array-like |
|
Array of values, defined at grid points, to interpolate between. |
|
trifinder : `~matplotlib.tri.TriFinder`, optional |
|
If this is not specified, the Triangulation's default TriFinder will |
|
be used by calling `.Triangulation.get_trifinder`. |
|
|
|
Methods |
|
------- |
|
`__call__` (x, y) : Returns interpolated values at (x, y) points. |
|
`gradient` (x, y) : Returns interpolated derivatives at (x, y) points. |
|
|
|
""" |
|
def __init__(self, triangulation, z, trifinder=None): |
|
super().__init__(triangulation, z, trifinder) |
|
|
|
|
|
self._plane_coefficients = \ |
|
self._triangulation.calculate_plane_coefficients(self._z) |
|
|
|
def __call__(self, x, y): |
|
return self._interpolate_multikeys(x, y, tri_index=None, |
|
return_keys=('z',))[0] |
|
__call__.__doc__ = TriInterpolator._docstring__call__ |
|
|
|
def gradient(self, x, y): |
|
return self._interpolate_multikeys(x, y, tri_index=None, |
|
return_keys=('dzdx', 'dzdy')) |
|
gradient.__doc__ = TriInterpolator._docstringgradient |
|
|
|
def _interpolate_single_key(self, return_key, tri_index, x, y): |
|
_api.check_in_list(['z', 'dzdx', 'dzdy'], return_key=return_key) |
|
if return_key == 'z': |
|
return (self._plane_coefficients[tri_index, 0]*x + |
|
self._plane_coefficients[tri_index, 1]*y + |
|
self._plane_coefficients[tri_index, 2]) |
|
elif return_key == 'dzdx': |
|
return self._plane_coefficients[tri_index, 0] |
|
else: |
|
return self._plane_coefficients[tri_index, 1] |
|
|
|
|
|
class CubicTriInterpolator(TriInterpolator): |
|
r""" |
|
Cubic interpolator on a triangular grid. |
|
|
|
In one-dimension - on a segment - a cubic interpolating function is |
|
defined by the values of the function and its derivative at both ends. |
|
This is almost the same in 2D inside a triangle, except that the values |
|
of the function and its 2 derivatives have to be defined at each triangle |
|
node. |
|
|
|
The CubicTriInterpolator takes the value of the function at each node - |
|
provided by the user - and internally computes the value of the |
|
derivatives, resulting in a smooth interpolation. |
|
(As a special feature, the user can also impose the value of the |
|
derivatives at each node, but this is not supposed to be the common |
|
usage.) |
|
|
|
Parameters |
|
---------- |
|
triangulation : `~matplotlib.tri.Triangulation` |
|
The triangulation to interpolate over. |
|
z : (npoints,) array-like |
|
Array of values, defined at grid points, to interpolate between. |
|
kind : {'min_E', 'geom', 'user'}, optional |
|
Choice of the smoothing algorithm, in order to compute |
|
the interpolant derivatives (defaults to 'min_E'): |
|
|
|
- if 'min_E': (default) The derivatives at each node is computed |
|
to minimize a bending energy. |
|
- if 'geom': The derivatives at each node is computed as a |
|
weighted average of relevant triangle normals. To be used for |
|
speed optimization (large grids). |
|
- if 'user': The user provides the argument *dz*, no computation |
|
is hence needed. |
|
|
|
trifinder : `~matplotlib.tri.TriFinder`, optional |
|
If not specified, the Triangulation's default TriFinder will |
|
be used by calling `.Triangulation.get_trifinder`. |
|
dz : tuple of array-likes (dzdx, dzdy), optional |
|
Used only if *kind* ='user'. In this case *dz* must be provided as |
|
(dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and |
|
are the interpolant first derivatives at the *triangulation* points. |
|
|
|
Methods |
|
------- |
|
`__call__` (x, y) : Returns interpolated values at (x, y) points. |
|
`gradient` (x, y) : Returns interpolated derivatives at (x, y) points. |
|
|
|
Notes |
|
----- |
|
This note is a bit technical and details how the cubic interpolation is |
|
computed. |
|
|
|
The interpolation is based on a Clough-Tocher subdivision scheme of |
|
the *triangulation* mesh (to make it clearer, each triangle of the |
|
grid will be divided in 3 child-triangles, and on each child triangle |
|
the interpolated function is a cubic polynomial of the 2 coordinates). |
|
This technique originates from FEM (Finite Element Method) analysis; |
|
the element used is a reduced Hsieh-Clough-Tocher (HCT) |
|
element. Its shape functions are described in [1]_. |
|
The assembled function is guaranteed to be C1-smooth, i.e. it is |
|
continuous and its first derivatives are also continuous (this |
|
is easy to show inside the triangles but is also true when crossing the |
|
edges). |
|
|
|
In the default case (*kind* ='min_E'), the interpolant minimizes a |
|
curvature energy on the functional space generated by the HCT element |
|
shape functions - with imposed values but arbitrary derivatives at each |
|
node. The minimized functional is the integral of the so-called total |
|
curvature (implementation based on an algorithm from [2]_ - PCG sparse |
|
solver): |
|
|
|
.. math:: |
|
|
|
E(z) = \frac{1}{2} \int_{\Omega} \left( |
|
\left( \frac{\partial^2{z}}{\partial{x}^2} \right)^2 + |
|
\left( \frac{\partial^2{z}}{\partial{y}^2} \right)^2 + |
|
2\left( \frac{\partial^2{z}}{\partial{y}\partial{x}} \right)^2 |
|
\right) dx\,dy |
|
|
|
If the case *kind* ='geom' is chosen by the user, a simple geometric |
|
approximation is used (weighted average of the triangle normal |
|
vectors), which could improve speed on very large grids. |
|
|
|
References |
|
---------- |
|
.. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general |
|
Hsieh-Clough-Tocher triangles, complete or reduced.", |
|
International Journal for Numerical Methods in Engineering, |
|
17(5):784 - 789. 2.01. |
|
.. [2] C.T. Kelley, "Iterative Methods for Optimization". |
|
|
|
""" |
|
def __init__(self, triangulation, z, kind='min_E', trifinder=None, |
|
dz=None): |
|
super().__init__(triangulation, z, trifinder) |
|
|
|
|
|
|
|
|
|
self._triangulation.get_cpp_triangulation() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tri_analyzer = TriAnalyzer(self._triangulation) |
|
(compressed_triangles, compressed_x, compressed_y, tri_renum, |
|
node_renum) = tri_analyzer._get_compressed_triangulation() |
|
self._triangles = compressed_triangles |
|
self._tri_renum = tri_renum |
|
|
|
valid_node = (node_renum != -1) |
|
self._z[node_renum[valid_node]] = self._z[valid_node] |
|
|
|
|
|
self._unit_x = np.ptp(compressed_x) |
|
self._unit_y = np.ptp(compressed_y) |
|
self._pts = np.column_stack([compressed_x / self._unit_x, |
|
compressed_y / self._unit_y]) |
|
|
|
self._tris_pts = self._pts[self._triangles] |
|
|
|
self._eccs = self._compute_tri_eccentricities(self._tris_pts) |
|
|
|
_api.check_in_list(['user', 'geom', 'min_E'], kind=kind) |
|
self._dof = self._compute_dof(kind, dz=dz) |
|
|
|
self._ReferenceElement = _ReducedHCT_Element() |
|
|
|
def __call__(self, x, y): |
|
return self._interpolate_multikeys(x, y, tri_index=None, |
|
return_keys=('z',))[0] |
|
__call__.__doc__ = TriInterpolator._docstring__call__ |
|
|
|
def gradient(self, x, y): |
|
return self._interpolate_multikeys(x, y, tri_index=None, |
|
return_keys=('dzdx', 'dzdy')) |
|
gradient.__doc__ = TriInterpolator._docstringgradient |
|
|
|
def _interpolate_single_key(self, return_key, tri_index, x, y): |
|
_api.check_in_list(['z', 'dzdx', 'dzdy'], return_key=return_key) |
|
tris_pts = self._tris_pts[tri_index] |
|
alpha = self._get_alpha_vec(x, y, tris_pts) |
|
ecc = self._eccs[tri_index] |
|
dof = np.expand_dims(self._dof[tri_index], axis=1) |
|
if return_key == 'z': |
|
return self._ReferenceElement.get_function_values( |
|
alpha, ecc, dof) |
|
else: |
|
J = self._get_jacobian(tris_pts) |
|
dzdx = self._ReferenceElement.get_function_derivatives( |
|
alpha, J, ecc, dof) |
|
if return_key == 'dzdx': |
|
return dzdx[:, 0, 0] |
|
else: |
|
return dzdx[:, 1, 0] |
|
|
|
def _compute_dof(self, kind, dz=None): |
|
""" |
|
Compute and return nodal dofs according to kind. |
|
|
|
Parameters |
|
---------- |
|
kind : {'min_E', 'geom', 'user'} |
|
Choice of the _DOF_estimator subclass to estimate the gradient. |
|
dz : tuple of array-likes (dzdx, dzdy), optional |
|
Used only if *kind*=user; in this case passed to the |
|
:class:`_DOF_estimator_user`. |
|
|
|
Returns |
|
------- |
|
array-like, shape (npts, 2) |
|
Estimation of the gradient at triangulation nodes (stored as |
|
degree of freedoms of reduced-HCT triangle elements). |
|
""" |
|
if kind == 'user': |
|
if dz is None: |
|
raise ValueError("For a CubicTriInterpolator with " |
|
"*kind*='user', a valid *dz* " |
|
"argument is expected.") |
|
TE = _DOF_estimator_user(self, dz=dz) |
|
elif kind == 'geom': |
|
TE = _DOF_estimator_geom(self) |
|
else: |
|
TE = _DOF_estimator_min_E(self) |
|
return TE.compute_dof_from_df() |
|
|
|
@staticmethod |
|
def _get_alpha_vec(x, y, tris_pts): |
|
""" |
|
Fast (vectorized) function to compute barycentric coordinates alpha. |
|
|
|
Parameters |
|
---------- |
|
x, y : array-like of dim 1 (shape (nx,)) |
|
Coordinates of the points whose points barycentric coordinates are |
|
requested. |
|
tris_pts : array like of dim 3 (shape: (nx, 3, 2)) |
|
Coordinates of the containing triangles apexes. |
|
|
|
Returns |
|
------- |
|
array of dim 2 (shape (nx, 3)) |
|
Barycentric coordinates of the points inside the containing |
|
triangles. |
|
""" |
|
ndim = tris_pts.ndim-2 |
|
|
|
a = tris_pts[:, 1, :] - tris_pts[:, 0, :] |
|
b = tris_pts[:, 2, :] - tris_pts[:, 0, :] |
|
abT = np.stack([a, b], axis=-1) |
|
ab = _transpose_vectorized(abT) |
|
OM = np.stack([x, y], axis=1) - tris_pts[:, 0, :] |
|
|
|
metric = ab @ abT |
|
|
|
|
|
|
|
|
|
metric_inv = _pseudo_inv22sym_vectorized(metric) |
|
Covar = ab @ _transpose_vectorized(np.expand_dims(OM, ndim)) |
|
ksi = metric_inv @ Covar |
|
alpha = _to_matrix_vectorized([ |
|
[1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]]) |
|
return alpha |
|
|
|
@staticmethod |
|
def _get_jacobian(tris_pts): |
|
""" |
|
Fast (vectorized) function to compute triangle jacobian matrix. |
|
|
|
Parameters |
|
---------- |
|
tris_pts : array like of dim 3 (shape: (nx, 3, 2)) |
|
Coordinates of the containing triangles apexes. |
|
|
|
Returns |
|
------- |
|
array of dim 3 (shape (nx, 2, 2)) |
|
Barycentric coordinates of the points inside the containing |
|
triangles. |
|
J[itri, :, :] is the jacobian matrix at apex 0 of the triangle |
|
itri, so that the following (matrix) relationship holds: |
|
[dz/dksi] = [J] x [dz/dx] |
|
with x: global coordinates |
|
ksi: element parametric coordinates in triangle first apex |
|
local basis. |
|
""" |
|
a = np.array(tris_pts[:, 1, :] - tris_pts[:, 0, :]) |
|
b = np.array(tris_pts[:, 2, :] - tris_pts[:, 0, :]) |
|
J = _to_matrix_vectorized([[a[:, 0], a[:, 1]], |
|
[b[:, 0], b[:, 1]]]) |
|
return J |
|
|
|
@staticmethod |
|
def _compute_tri_eccentricities(tris_pts): |
|
""" |
|
Compute triangle eccentricities. |
|
|
|
Parameters |
|
---------- |
|
tris_pts : array like of dim 3 (shape: (nx, 3, 2)) |
|
Coordinates of the triangles apexes. |
|
|
|
Returns |
|
------- |
|
array like of dim 2 (shape: (nx, 3)) |
|
The so-called eccentricity parameters [1] needed for HCT triangular |
|
element. |
|
""" |
|
a = np.expand_dims(tris_pts[:, 2, :] - tris_pts[:, 1, :], axis=2) |
|
b = np.expand_dims(tris_pts[:, 0, :] - tris_pts[:, 2, :], axis=2) |
|
c = np.expand_dims(tris_pts[:, 1, :] - tris_pts[:, 0, :], axis=2) |
|
|
|
|
|
dot_a = (_transpose_vectorized(a) @ a)[:, 0, 0] |
|
dot_b = (_transpose_vectorized(b) @ b)[:, 0, 0] |
|
dot_c = (_transpose_vectorized(c) @ c)[:, 0, 0] |
|
|
|
|
|
return _to_matrix_vectorized([[(dot_c-dot_b) / dot_a], |
|
[(dot_a-dot_c) / dot_b], |
|
[(dot_b-dot_a) / dot_c]]) |
|
|
|
|
|
|
|
|
|
class _ReducedHCT_Element: |
|
""" |
|
Implementation of reduced HCT triangular element with explicit shape |
|
functions. |
|
|
|
Computes z, dz, d2z and the element stiffness matrix for bending energy: |
|
E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA) |
|
|
|
*** Reference for the shape functions: *** |
|
[1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or |
|
reduced. |
|
Michel Bernadou, Kamal Hassan |
|
International Journal for Numerical Methods in Engineering. |
|
17(5):784 - 789. 2.01 |
|
|
|
*** Element description: *** |
|
9 dofs: z and dz given at 3 apex |
|
C1 (conform) |
|
|
|
""" |
|
|
|
|
|
M = np.array([ |
|
[ 0.00, 0.00, 0.00, 4.50, 4.50, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-0.25, 0.00, 0.00, 0.50, 1.25, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-0.25, 0.00, 0.00, 1.25, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.50, 1.00, 0.00, -1.50, 0.00, 3.00, 3.00, 0.00, 0.00, 3.00], |
|
[ 0.00, 0.00, 0.00, -0.25, 0.25, 0.00, 1.00, 0.00, 0.00, 0.50], |
|
[ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00], |
|
[ 0.50, 0.00, 1.00, 0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00], |
|
[ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00], |
|
[ 0.00, 0.00, 0.00, 0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]]) |
|
M0 = np.array([ |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-1.00, 0.00, 0.00, 1.50, 1.50, 0.00, 0.00, 0.00, 0.00, -3.00], |
|
[-0.50, 0.00, 0.00, 0.75, 0.75, 0.00, 0.00, 0.00, 0.00, -1.50], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00, 3.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00, 1.50]]) |
|
M1 = np.array([ |
|
[-0.50, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-0.25, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) |
|
M2 = np.array([ |
|
[ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-0.50, 0.00, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[-0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], |
|
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) |
|
|
|
|
|
|
|
rotate_dV = np.array([[ 1., 0.], [ 0., 1.], |
|
[ 0., 1.], [-1., -1.], |
|
[-1., -1.], [ 1., 0.]]) |
|
|
|
rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0., 0., 1.], |
|
[0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.], |
|
[1., 1., 1.], [1., 0., 0.], [-2., 0., -1.]]) |
|
|
|
|
|
|
|
|
|
|
|
n_gauss = 9 |
|
gauss_pts = np.array([[13./18., 4./18., 1./18.], |
|
[ 4./18., 13./18., 1./18.], |
|
[ 7./18., 7./18., 4./18.], |
|
[ 1./18., 13./18., 4./18.], |
|
[ 1./18., 4./18., 13./18.], |
|
[ 4./18., 7./18., 7./18.], |
|
[ 4./18., 1./18., 13./18.], |
|
[13./18., 1./18., 4./18.], |
|
[ 7./18., 4./18., 7./18.]], dtype=np.float64) |
|
gauss_w = np.ones([9], dtype=np.float64) / 9. |
|
|
|
|
|
E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]]) |
|
|
|
|
|
J0_to_J1 = np.array([[-1., 1.], [-1., 0.]]) |
|
J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]]) |
|
|
|
def get_function_values(self, alpha, ecc, dofs): |
|
""" |
|
Parameters |
|
---------- |
|
alpha : is a (N x 3 x 1) array (array of column-matrices) of |
|
barycentric coordinates, |
|
ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle |
|
eccentricities, |
|
dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed |
|
degrees of freedom. |
|
|
|
Returns |
|
------- |
|
Returns the N-array of interpolated function values. |
|
""" |
|
subtri = np.argmin(alpha, axis=1)[:, 0] |
|
ksi = _roll_vectorized(alpha, -subtri, axis=0) |
|
E = _roll_vectorized(ecc, -subtri, axis=0) |
|
x = ksi[:, 0, 0] |
|
y = ksi[:, 1, 0] |
|
z = ksi[:, 2, 0] |
|
x_sq = x*x |
|
y_sq = y*y |
|
z_sq = z*z |
|
V = _to_matrix_vectorized([ |
|
[x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x], |
|
[y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]]) |
|
prod = self.M @ V |
|
prod += _scalar_vectorized(E[:, 0, 0], self.M0 @ V) |
|
prod += _scalar_vectorized(E[:, 1, 0], self.M1 @ V) |
|
prod += _scalar_vectorized(E[:, 2, 0], self.M2 @ V) |
|
s = _roll_vectorized(prod, 3*subtri, axis=0) |
|
return (dofs @ s)[:, 0, 0] |
|
|
|
def get_function_derivatives(self, alpha, J, ecc, dofs): |
|
""" |
|
Parameters |
|
---------- |
|
*alpha* is a (N x 3 x 1) array (array of column-matrices of |
|
barycentric coordinates) |
|
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at |
|
triangle first apex) |
|
*ecc* is a (N x 3 x 1) array (array of column-matrices of triangle |
|
eccentricities) |
|
*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed |
|
degrees of freedom. |
|
|
|
Returns |
|
------- |
|
Returns the values of interpolated function derivatives [dz/dx, dz/dy] |
|
in global coordinates at locations alpha, as a column-matrices of |
|
shape (N x 2 x 1). |
|
""" |
|
subtri = np.argmin(alpha, axis=1)[:, 0] |
|
ksi = _roll_vectorized(alpha, -subtri, axis=0) |
|
E = _roll_vectorized(ecc, -subtri, axis=0) |
|
x = ksi[:, 0, 0] |
|
y = ksi[:, 1, 0] |
|
z = ksi[:, 2, 0] |
|
x_sq = x*x |
|
y_sq = y*y |
|
z_sq = z*z |
|
dV = _to_matrix_vectorized([ |
|
[ -3.*x_sq, -3.*x_sq], |
|
[ 3.*y_sq, 0.], |
|
[ 0., 3.*z_sq], |
|
[ -2.*x*z, -2.*x*z+x_sq], |
|
[-2.*x*y+x_sq, -2.*x*y], |
|
[ 2.*x*y-y_sq, -y_sq], |
|
[ 2.*y*z, y_sq], |
|
[ z_sq, 2.*y*z], |
|
[ -z_sq, 2.*x*z-z_sq], |
|
[ x*z-y*z, x*y-y*z]]) |
|
|
|
dV = dV @ _extract_submatrices( |
|
self.rotate_dV, subtri, block_size=2, axis=0) |
|
|
|
prod = self.M @ dV |
|
prod += _scalar_vectorized(E[:, 0, 0], self.M0 @ dV) |
|
prod += _scalar_vectorized(E[:, 1, 0], self.M1 @ dV) |
|
prod += _scalar_vectorized(E[:, 2, 0], self.M2 @ dV) |
|
dsdksi = _roll_vectorized(prod, 3*subtri, axis=0) |
|
dfdksi = dofs @ dsdksi |
|
|
|
|
|
|
|
J_inv = _safe_inv22_vectorized(J) |
|
dfdx = J_inv @ _transpose_vectorized(dfdksi) |
|
return dfdx |
|
|
|
def get_function_hessians(self, alpha, J, ecc, dofs): |
|
""" |
|
Parameters |
|
---------- |
|
*alpha* is a (N x 3 x 1) array (array of column-matrices) of |
|
barycentric coordinates |
|
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at |
|
triangle first apex) |
|
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle |
|
eccentricities |
|
*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed |
|
degrees of freedom. |
|
|
|
Returns |
|
------- |
|
Returns the values of interpolated function 2nd-derivatives |
|
[d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha, |
|
as a column-matrices of shape (N x 3 x 1). |
|
""" |
|
d2sdksi2 = self.get_d2Sidksij2(alpha, ecc) |
|
d2fdksi2 = dofs @ d2sdksi2 |
|
H_rot = self.get_Hrot_from_J(J) |
|
d2fdx2 = d2fdksi2 @ H_rot |
|
return _transpose_vectorized(d2fdx2) |
|
|
|
def get_d2Sidksij2(self, alpha, ecc): |
|
""" |
|
Parameters |
|
---------- |
|
*alpha* is a (N x 3 x 1) array (array of column-matrices) of |
|
barycentric coordinates |
|
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle |
|
eccentricities |
|
|
|
Returns |
|
------- |
|
Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions |
|
expressed in covariant coordinates in first apex basis. |
|
""" |
|
subtri = np.argmin(alpha, axis=1)[:, 0] |
|
ksi = _roll_vectorized(alpha, -subtri, axis=0) |
|
E = _roll_vectorized(ecc, -subtri, axis=0) |
|
x = ksi[:, 0, 0] |
|
y = ksi[:, 1, 0] |
|
z = ksi[:, 2, 0] |
|
d2V = _to_matrix_vectorized([ |
|
[ 6.*x, 6.*x, 6.*x], |
|
[ 6.*y, 0., 0.], |
|
[ 0., 6.*z, 0.], |
|
[ 2.*z, 2.*z-4.*x, 2.*z-2.*x], |
|
[2.*y-4.*x, 2.*y, 2.*y-2.*x], |
|
[2.*x-4.*y, 0., -2.*y], |
|
[ 2.*z, 0., 2.*y], |
|
[ 0., 2.*y, 2.*z], |
|
[ 0., 2.*x-4.*z, -2.*z], |
|
[ -2.*z, -2.*y, x-y-z]]) |
|
|
|
d2V = d2V @ _extract_submatrices( |
|
self.rotate_d2V, subtri, block_size=3, axis=0) |
|
prod = self.M @ d2V |
|
prod += _scalar_vectorized(E[:, 0, 0], self.M0 @ d2V) |
|
prod += _scalar_vectorized(E[:, 1, 0], self.M1 @ d2V) |
|
prod += _scalar_vectorized(E[:, 2, 0], self.M2 @ d2V) |
|
d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0) |
|
return d2sdksi2 |
|
|
|
def get_bending_matrices(self, J, ecc): |
|
""" |
|
Parameters |
|
---------- |
|
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at |
|
triangle first apex) |
|
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle |
|
eccentricities |
|
|
|
Returns |
|
------- |
|
Returns the element K matrices for bending energy expressed in |
|
GLOBAL nodal coordinates. |
|
K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA] |
|
tri_J is needed to rotate dofs from local basis to global basis |
|
""" |
|
n = np.size(ecc, 0) |
|
|
|
|
|
J1 = self.J0_to_J1 @ J |
|
J2 = self.J0_to_J2 @ J |
|
DOF_rot = np.zeros([n, 9, 9], dtype=np.float64) |
|
DOF_rot[:, 0, 0] = 1 |
|
DOF_rot[:, 3, 3] = 1 |
|
DOF_rot[:, 6, 6] = 1 |
|
DOF_rot[:, 1:3, 1:3] = J |
|
DOF_rot[:, 4:6, 4:6] = J1 |
|
DOF_rot[:, 7:9, 7:9] = J2 |
|
|
|
|
|
H_rot, area = self.get_Hrot_from_J(J, return_area=True) |
|
|
|
|
|
|
|
K = np.zeros([n, 9, 9], dtype=np.float64) |
|
weights = self.gauss_w |
|
pts = self.gauss_pts |
|
for igauss in range(self.n_gauss): |
|
alpha = np.tile(pts[igauss, :], n).reshape(n, 3) |
|
alpha = np.expand_dims(alpha, 2) |
|
weight = weights[igauss] |
|
d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc) |
|
d2Skdx2 = d2Skdksi2 @ H_rot |
|
K += weight * (d2Skdx2 @ self.E @ _transpose_vectorized(d2Skdx2)) |
|
|
|
|
|
K = _transpose_vectorized(DOF_rot) @ K @ DOF_rot |
|
|
|
|
|
return _scalar_vectorized(area, K) |
|
|
|
def get_Hrot_from_J(self, J, return_area=False): |
|
""" |
|
Parameters |
|
---------- |
|
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at |
|
triangle first apex) |
|
|
|
Returns |
|
------- |
|
Returns H_rot used to rotate Hessian from local basis of first apex, |
|
to global coordinates. |
|
if *return_area* is True, returns also the triangle area (0.5*det(J)) |
|
""" |
|
|
|
|
|
J_inv = _safe_inv22_vectorized(J) |
|
Ji00 = J_inv[:, 0, 0] |
|
Ji11 = J_inv[:, 1, 1] |
|
Ji10 = J_inv[:, 1, 0] |
|
Ji01 = J_inv[:, 0, 1] |
|
H_rot = _to_matrix_vectorized([ |
|
[Ji00*Ji00, Ji10*Ji10, Ji00*Ji10], |
|
[Ji01*Ji01, Ji11*Ji11, Ji01*Ji11], |
|
[2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]]) |
|
if not return_area: |
|
return H_rot |
|
else: |
|
area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0]) |
|
return H_rot, area |
|
|
|
def get_Kff_and_Ff(self, J, ecc, triangles, Uc): |
|
""" |
|
Build K and F for the following elliptic formulation: |
|
minimization of curvature energy with value of function at node |
|
imposed and derivatives 'free'. |
|
|
|
Build the global Kff matrix in cco format. |
|
Build the full Ff vec Ff = - Kfc x Uc. |
|
|
|
Parameters |
|
---------- |
|
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at |
|
triangle first apex) |
|
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle |
|
eccentricities |
|
*triangles* is a (N x 3) array of nodes indexes. |
|
*Uc* is (N x 3) array of imposed displacements at nodes |
|
|
|
Returns |
|
------- |
|
(Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate |
|
(row, col) entries must be summed. |
|
Ff: force vector - dim npts * 3 |
|
""" |
|
ntri = np.size(ecc, 0) |
|
vec_range = np.arange(ntri, dtype=np.int32) |
|
c_indices = np.full(ntri, -1, dtype=np.int32) |
|
f_dof = [1, 2, 4, 5, 7, 8] |
|
c_dof = [0, 3, 6] |
|
|
|
|
|
f_dof_indices = _to_matrix_vectorized([[ |
|
c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1, |
|
c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1, |
|
c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]]) |
|
|
|
expand_indices = np.ones([ntri, 9, 1], dtype=np.int32) |
|
f_row_indices = _transpose_vectorized(expand_indices @ f_dof_indices) |
|
f_col_indices = expand_indices @ f_dof_indices |
|
K_elem = self.get_bending_matrices(J, ecc) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)]) |
|
Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)]) |
|
Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)]) |
|
|
|
|
|
Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)] |
|
Uc_elem = np.expand_dims(Uc, axis=2) |
|
Ff_elem = -(Kfc_elem @ Uc_elem)[:, :, 0] |
|
Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :] |
|
|
|
|
|
|
|
Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem)) |
|
return Kff_rows, Kff_cols, Kff_vals, Ff |
|
|
|
|
|
|
|
|
|
|
|
|
|
class _DOF_estimator: |
|
""" |
|
Abstract base class for classes used to estimate a function's first |
|
derivatives, and deduce the dofs for a CubicTriInterpolator using a |
|
reduced HCT element formulation. |
|
|
|
Derived classes implement ``compute_df(self, **kwargs)``, returning |
|
``np.vstack([dfx, dfy]).T`` where ``dfx, dfy`` are the estimation of the 2 |
|
gradient coordinates. |
|
""" |
|
def __init__(self, interpolator, **kwargs): |
|
_api.check_isinstance(CubicTriInterpolator, interpolator=interpolator) |
|
self._pts = interpolator._pts |
|
self._tris_pts = interpolator._tris_pts |
|
self.z = interpolator._z |
|
self._triangles = interpolator._triangles |
|
(self._unit_x, self._unit_y) = (interpolator._unit_x, |
|
interpolator._unit_y) |
|
self.dz = self.compute_dz(**kwargs) |
|
self.compute_dof_from_df() |
|
|
|
def compute_dz(self, **kwargs): |
|
raise NotImplementedError |
|
|
|
def compute_dof_from_df(self): |
|
""" |
|
Compute reduced-HCT elements degrees of freedom, from the gradient. |
|
""" |
|
J = CubicTriInterpolator._get_jacobian(self._tris_pts) |
|
tri_z = self.z[self._triangles] |
|
tri_dz = self.dz[self._triangles] |
|
tri_dof = self.get_dof_vec(tri_z, tri_dz, J) |
|
return tri_dof |
|
|
|
@staticmethod |
|
def get_dof_vec(tri_z, tri_dz, J): |
|
""" |
|
Compute the dof vector of a triangle, from the value of f, df and |
|
of the local Jacobian at each node. |
|
|
|
Parameters |
|
---------- |
|
tri_z : shape (3,) array |
|
f nodal values. |
|
tri_dz : shape (3, 2) array |
|
df/dx, df/dy nodal values. |
|
J |
|
Jacobian matrix in local basis of apex 0. |
|
|
|
Returns |
|
------- |
|
dof : shape (9,) array |
|
For each apex ``iapex``:: |
|
|
|
dof[iapex*3+0] = f(Ai) |
|
dof[iapex*3+1] = df(Ai).(AiAi+) |
|
dof[iapex*3+2] = df(Ai).(AiAi-) |
|
""" |
|
npt = tri_z.shape[0] |
|
dof = np.zeros([npt, 9], dtype=np.float64) |
|
J1 = _ReducedHCT_Element.J0_to_J1 @ J |
|
J2 = _ReducedHCT_Element.J0_to_J2 @ J |
|
|
|
col0 = J @ np.expand_dims(tri_dz[:, 0, :], axis=2) |
|
col1 = J1 @ np.expand_dims(tri_dz[:, 1, :], axis=2) |
|
col2 = J2 @ np.expand_dims(tri_dz[:, 2, :], axis=2) |
|
|
|
dfdksi = _to_matrix_vectorized([ |
|
[col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]], |
|
[col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]]) |
|
dof[:, 0:7:3] = tri_z |
|
dof[:, 1:8:3] = dfdksi[:, 0] |
|
dof[:, 2:9:3] = dfdksi[:, 1] |
|
return dof |
|
|
|
|
|
class _DOF_estimator_user(_DOF_estimator): |
|
"""dz is imposed by user; accounts for scaling if any.""" |
|
|
|
def compute_dz(self, dz): |
|
(dzdx, dzdy) = dz |
|
dzdx = dzdx * self._unit_x |
|
dzdy = dzdy * self._unit_y |
|
return np.vstack([dzdx, dzdy]).T |
|
|
|
|
|
class _DOF_estimator_geom(_DOF_estimator): |
|
"""Fast 'geometric' approximation, recommended for large arrays.""" |
|
|
|
def compute_dz(self): |
|
""" |
|
self.df is computed as weighted average of _triangles sharing a common |
|
node. On each triangle itri f is first assumed linear (= ~f), which |
|
allows to compute d~f[itri] |
|
Then the following approximation of df nodal values is then proposed: |
|
f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt) |
|
The weighted coeff. w[itri] are proportional to the angle of the |
|
triangle itri at apex ipt |
|
""" |
|
el_geom_w = self.compute_geom_weights() |
|
el_geom_grad = self.compute_geom_grads() |
|
|
|
|
|
w_node_sum = np.bincount(np.ravel(self._triangles), |
|
weights=np.ravel(el_geom_w)) |
|
|
|
|
|
dfx_el_w = np.empty_like(el_geom_w) |
|
dfy_el_w = np.empty_like(el_geom_w) |
|
for iapex in range(3): |
|
dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0] |
|
dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1] |
|
dfx_node_sum = np.bincount(np.ravel(self._triangles), |
|
weights=np.ravel(dfx_el_w)) |
|
dfy_node_sum = np.bincount(np.ravel(self._triangles), |
|
weights=np.ravel(dfy_el_w)) |
|
|
|
|
|
dfx_estim = dfx_node_sum/w_node_sum |
|
dfy_estim = dfy_node_sum/w_node_sum |
|
return np.vstack([dfx_estim, dfy_estim]).T |
|
|
|
def compute_geom_weights(self): |
|
""" |
|
Build the (nelems, 3) weights coeffs of _triangles angles, |
|
renormalized so that np.sum(weights, axis=1) == np.ones(nelems) |
|
""" |
|
weights = np.zeros([np.size(self._triangles, 0), 3]) |
|
tris_pts = self._tris_pts |
|
for ipt in range(3): |
|
p0 = tris_pts[:, ipt % 3, :] |
|
p1 = tris_pts[:, (ipt+1) % 3, :] |
|
p2 = tris_pts[:, (ipt-1) % 3, :] |
|
alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0]) |
|
alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0]) |
|
|
|
|
|
angle = np.abs(((alpha2-alpha1) / np.pi) % 1) |
|
|
|
|
|
|
|
weights[:, ipt] = 0.5 - np.abs(angle-0.5) |
|
return weights |
|
|
|
def compute_geom_grads(self): |
|
""" |
|
Compute the (global) gradient component of f assumed linear (~f). |
|
returns array df of shape (nelems, 2) |
|
df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz |
|
""" |
|
tris_pts = self._tris_pts |
|
tris_f = self.z[self._triangles] |
|
|
|
dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :] |
|
dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :] |
|
dM = np.dstack([dM1, dM2]) |
|
|
|
|
|
dM_inv = _safe_inv22_vectorized(dM) |
|
|
|
dZ1 = tris_f[:, 1] - tris_f[:, 0] |
|
dZ2 = tris_f[:, 2] - tris_f[:, 0] |
|
dZ = np.vstack([dZ1, dZ2]).T |
|
df = np.empty_like(dZ) |
|
|
|
|
|
df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0] |
|
df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1] |
|
return df |
|
|
|
|
|
class _DOF_estimator_min_E(_DOF_estimator_geom): |
|
""" |
|
The 'smoothest' approximation, df is computed through global minimization |
|
of the bending energy: |
|
E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA] |
|
""" |
|
def __init__(self, Interpolator): |
|
self._eccs = Interpolator._eccs |
|
super().__init__(Interpolator) |
|
|
|
def compute_dz(self): |
|
""" |
|
Elliptic solver for bending energy minimization. |
|
Uses a dedicated 'toy' sparse Jacobi PCG solver. |
|
""" |
|
|
|
dz_init = super().compute_dz() |
|
Uf0 = np.ravel(dz_init) |
|
|
|
reference_element = _ReducedHCT_Element() |
|
J = CubicTriInterpolator._get_jacobian(self._tris_pts) |
|
eccs = self._eccs |
|
triangles = self._triangles |
|
Uc = self.z[self._triangles] |
|
|
|
|
|
Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff( |
|
J, eccs, triangles, Uc) |
|
|
|
|
|
|
|
|
|
|
|
tol = 1.e-10 |
|
n_dof = Ff.shape[0] |
|
Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols, |
|
shape=(n_dof, n_dof)) |
|
Kff_coo.compress_csc() |
|
Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol) |
|
|
|
|
|
err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff) |
|
if err0 < err: |
|
|
|
_api.warn_external("In TriCubicInterpolator initialization, " |
|
"PCG sparse solver did not converge after " |
|
"1000 iterations. `geom` approximation is " |
|
"used instead of `min_E`") |
|
Uf = Uf0 |
|
|
|
|
|
dz = np.empty([self._pts.shape[0], 2], dtype=np.float64) |
|
dz[:, 0] = Uf[::2] |
|
dz[:, 1] = Uf[1::2] |
|
return dz |
|
|
|
|
|
|
|
|
|
class _Sparse_Matrix_coo: |
|
def __init__(self, vals, rows, cols, shape): |
|
""" |
|
Create a sparse matrix in coo format. |
|
*vals*: arrays of values of non-null entries of the matrix |
|
*rows*: int arrays of rows of non-null entries of the matrix |
|
*cols*: int arrays of cols of non-null entries of the matrix |
|
*shape*: 2-tuple (n, m) of matrix shape |
|
""" |
|
self.n, self.m = shape |
|
self.vals = np.asarray(vals, dtype=np.float64) |
|
self.rows = np.asarray(rows, dtype=np.int32) |
|
self.cols = np.asarray(cols, dtype=np.int32) |
|
|
|
def dot(self, V): |
|
""" |
|
Dot product of self by a vector *V* in sparse-dense to dense format |
|
*V* dense vector of shape (self.m,). |
|
""" |
|
assert V.shape == (self.m,) |
|
return np.bincount(self.rows, |
|
weights=self.vals*V[self.cols], |
|
minlength=self.m) |
|
|
|
def compress_csc(self): |
|
""" |
|
Compress rows, cols, vals / summing duplicates. Sort for csc format. |
|
""" |
|
_, unique, indices = np.unique( |
|
self.rows + self.n*self.cols, |
|
return_index=True, return_inverse=True) |
|
self.rows = self.rows[unique] |
|
self.cols = self.cols[unique] |
|
self.vals = np.bincount(indices, weights=self.vals) |
|
|
|
def compress_csr(self): |
|
""" |
|
Compress rows, cols, vals / summing duplicates. Sort for csr format. |
|
""" |
|
_, unique, indices = np.unique( |
|
self.m*self.rows + self.cols, |
|
return_index=True, return_inverse=True) |
|
self.rows = self.rows[unique] |
|
self.cols = self.cols[unique] |
|
self.vals = np.bincount(indices, weights=self.vals) |
|
|
|
def to_dense(self): |
|
""" |
|
Return a dense matrix representing self, mainly for debugging purposes. |
|
""" |
|
ret = np.zeros([self.n, self.m], dtype=np.float64) |
|
nvals = self.vals.size |
|
for i in range(nvals): |
|
ret[self.rows[i], self.cols[i]] += self.vals[i] |
|
return ret |
|
|
|
def __str__(self): |
|
return self.to_dense().__str__() |
|
|
|
@property |
|
def diag(self): |
|
"""Return the (dense) vector of the diagonal elements.""" |
|
in_diag = (self.rows == self.cols) |
|
diag = np.zeros(min(self.n, self.n), dtype=np.float64) |
|
diag[self.rows[in_diag]] = self.vals[in_diag] |
|
return diag |
|
|
|
|
|
def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000): |
|
""" |
|
Use Preconditioned Conjugate Gradient iteration to solve A x = b |
|
A simple Jacobi (diagonal) preconditioner is used. |
|
|
|
Parameters |
|
---------- |
|
A : _Sparse_Matrix_coo |
|
*A* must have been compressed before by compress_csc or |
|
compress_csr method. |
|
b : array |
|
Right hand side of the linear system. |
|
x0 : array, optional |
|
Starting guess for the solution. Defaults to the zero vector. |
|
tol : float, optional |
|
Tolerance to achieve. The algorithm terminates when the relative |
|
residual is below tol. Default is 1e-10. |
|
maxiter : int, optional |
|
Maximum number of iterations. Iteration will stop after *maxiter* |
|
steps even if the specified tolerance has not been achieved. Defaults |
|
to 1000. |
|
|
|
Returns |
|
------- |
|
x : array |
|
The converged solution. |
|
err : float |
|
The absolute error np.linalg.norm(A.dot(x) - b) |
|
""" |
|
n = b.size |
|
assert A.n == n |
|
assert A.m == n |
|
b_norm = np.linalg.norm(b) |
|
|
|
|
|
kvec = A.diag |
|
|
|
kvec = np.maximum(kvec, 1e-6) |
|
|
|
|
|
if x0 is None: |
|
x = np.zeros(n) |
|
else: |
|
x = x0 |
|
|
|
r = b - A.dot(x) |
|
w = r/kvec |
|
|
|
p = np.zeros(n) |
|
beta = 0.0 |
|
rho = np.dot(r, w) |
|
k = 0 |
|
|
|
|
|
while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter): |
|
p = w + beta*p |
|
z = A.dot(p) |
|
alpha = rho/np.dot(p, z) |
|
r = r - alpha*z |
|
w = r/kvec |
|
rhoold = rho |
|
rho = np.dot(r, w) |
|
x = x + alpha*p |
|
beta = rho/rhoold |
|
|
|
k += 1 |
|
err = np.linalg.norm(A.dot(x) - b) |
|
return x, err |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _safe_inv22_vectorized(M): |
|
""" |
|
Inversion of arrays of (2, 2) matrices, returns 0 for rank-deficient |
|
matrices. |
|
|
|
*M* : array of (2, 2) matrices to inverse, shape (n, 2, 2) |
|
""" |
|
_api.check_shape((None, 2, 2), M=M) |
|
M_inv = np.empty_like(M) |
|
prod1 = M[:, 0, 0]*M[:, 1, 1] |
|
delta = prod1 - M[:, 0, 1]*M[:, 1, 0] |
|
|
|
|
|
|
|
rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) |
|
if np.all(rank2): |
|
|
|
delta_inv = 1./delta |
|
else: |
|
|
|
delta_inv = np.zeros(M.shape[0]) |
|
delta_inv[rank2] = 1./delta[rank2] |
|
|
|
M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv |
|
M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv |
|
M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv |
|
M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv |
|
return M_inv |
|
|
|
|
|
def _pseudo_inv22sym_vectorized(M): |
|
""" |
|
Inversion of arrays of (2, 2) SYMMETRIC matrices; returns the |
|
(Moore-Penrose) pseudo-inverse for rank-deficient matrices. |
|
|
|
In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal |
|
projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2 |
|
In case M is of rank 0, we return the null matrix. |
|
|
|
*M* : array of (2, 2) matrices to inverse, shape (n, 2, 2) |
|
""" |
|
_api.check_shape((None, 2, 2), M=M) |
|
M_inv = np.empty_like(M) |
|
prod1 = M[:, 0, 0]*M[:, 1, 1] |
|
delta = prod1 - M[:, 0, 1]*M[:, 1, 0] |
|
rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) |
|
|
|
if np.all(rank2): |
|
|
|
M_inv[:, 0, 0] = M[:, 1, 1] / delta |
|
M_inv[:, 0, 1] = -M[:, 0, 1] / delta |
|
M_inv[:, 1, 0] = -M[:, 1, 0] / delta |
|
M_inv[:, 1, 1] = M[:, 0, 0] / delta |
|
else: |
|
|
|
|
|
|
|
delta = delta[rank2] |
|
M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta |
|
M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta |
|
M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta |
|
M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta |
|
|
|
rank01 = ~rank2 |
|
tr = M[rank01, 0, 0] + M[rank01, 1, 1] |
|
tr_zeros = (np.abs(tr) < 1.e-8) |
|
sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros) |
|
|
|
M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv |
|
M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv |
|
M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv |
|
M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv |
|
|
|
return M_inv |
|
|
|
|
|
def _scalar_vectorized(scalar, M): |
|
""" |
|
Scalar product between scalars and matrices. |
|
""" |
|
return scalar[:, np.newaxis, np.newaxis]*M |
|
|
|
|
|
def _transpose_vectorized(M): |
|
""" |
|
Transposition of an array of matrices *M*. |
|
""" |
|
return np.transpose(M, [0, 2, 1]) |
|
|
|
|
|
def _roll_vectorized(M, roll_indices, axis): |
|
""" |
|
Roll an array of matrices along *axis* (0: rows, 1: columns) according to |
|
an array of indices *roll_indices*. |
|
""" |
|
assert axis in [0, 1] |
|
ndim = M.ndim |
|
assert ndim == 3 |
|
ndim_roll = roll_indices.ndim |
|
assert ndim_roll == 1 |
|
sh = M.shape |
|
r, c = sh[-2:] |
|
assert sh[0] == roll_indices.shape[0] |
|
vec_indices = np.arange(sh[0], dtype=np.int32) |
|
|
|
|
|
M_roll = np.empty_like(M) |
|
if axis == 0: |
|
for ir in range(r): |
|
for ic in range(c): |
|
M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic] |
|
else: |
|
for ir in range(r): |
|
for ic in range(c): |
|
M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c] |
|
return M_roll |
|
|
|
|
|
def _to_matrix_vectorized(M): |
|
""" |
|
Build an array of matrices from individuals np.arrays of identical shapes. |
|
|
|
Parameters |
|
---------- |
|
M |
|
ncols-list of nrows-lists of shape sh. |
|
|
|
Returns |
|
------- |
|
M_res : np.array of shape (sh, nrow, ncols) |
|
*M_res* satisfies ``M_res[..., i, j] = M[i][j]``. |
|
""" |
|
assert isinstance(M, (tuple, list)) |
|
assert all(isinstance(item, (tuple, list)) for item in M) |
|
c_vec = np.asarray([len(item) for item in M]) |
|
assert np.all(c_vec-c_vec[0] == 0) |
|
r = len(M) |
|
c = c_vec[0] |
|
M00 = np.asarray(M[0][0]) |
|
dt = M00.dtype |
|
sh = [M00.shape[0], r, c] |
|
M_ret = np.empty(sh, dtype=dt) |
|
for irow in range(r): |
|
for icol in range(c): |
|
M_ret[:, irow, icol] = np.asarray(M[irow][icol]) |
|
return M_ret |
|
|
|
|
|
def _extract_submatrices(M, block_indices, block_size, axis): |
|
""" |
|
Extract selected blocks of a matrices *M* depending on parameters |
|
*block_indices* and *block_size*. |
|
|
|
Returns the array of extracted matrices *Mres* so that :: |
|
|
|
M_res[..., ir, :] = M[(block_indices*block_size+ir), :] |
|
""" |
|
assert block_indices.ndim == 1 |
|
assert axis in [0, 1] |
|
|
|
r, c = M.shape |
|
if axis == 0: |
|
sh = [block_indices.shape[0], block_size, c] |
|
else: |
|
sh = [block_indices.shape[0], r, block_size] |
|
|
|
dt = M.dtype |
|
M_res = np.empty(sh, dtype=dt) |
|
if axis == 0: |
|
for ir in range(block_size): |
|
M_res[:, ir, :] = M[(block_indices*block_size+ir), :] |
|
else: |
|
for ic in range(block_size): |
|
M_res[:, :, ic] = M[:, (block_indices*block_size+ic)] |
|
|
|
return M_res |
|
|