File size: 13,217 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
#include "bcftools.pysam.h"
/* ccall.c -- consensus variant calling.
Copyright (C) 2013-2014 Genome Research Ltd.
Portions copyright (C) 2010 Broad Institute.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <math.h>
#include <assert.h>
#include <htslib/kfunc.h>
#include "call.h"
#include "kmin.h"
#include "prob1.h"
// Most of the original -c calling was moved to bcftools as it was
// and its data structures were wrapped into the ccal_t to make it
// functional quickly. This is not the desired state.
struct _ccall_t
{
bcf_p1aux_t *p1;
};
void ccall_init(call_t *call)
{
call->cdat = (ccall_t*) calloc(1,sizeof(ccall_t));
call_init_pl2p(call);
call->cdat->p1 = bcf_p1_init(bcf_hdr_nsamples(call->hdr), call->ploidy);
call->gts = (int*) calloc(bcf_hdr_nsamples(call->hdr)*2,sizeof(int)); // assuming at most diploid everywhere
call->nals_map = 5;
call->als_map = (int*) malloc(sizeof(int)*call->nals_map);
bcf_hdr_append(call->hdr,"##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">");
if ( call->output_tags & CALL_FMT_GQ )
{
bcf_hdr_append(call->hdr,"##FORMAT=<ID=GQ,Number=1,Type=Integer,Description=\"Genotype Quality\">");
call->GQs = (int32_t*) malloc(sizeof(int32_t)*bcf_hdr_nsamples(call->hdr));
}
if ( call->output_tags & CALL_FMT_GP )
error("Sorry, -f GP is not supported with -c\n");
bcf_hdr_append(call->hdr,"##INFO=<ID=AF1,Number=1,Type=Float,Description=\"Max-likelihood estimate of the first ALT allele frequency (assuming HWE)\">");
// Todo: groups not migrated to 'bcftools call' yet
bcf_hdr_append(call->hdr,"##INFO=<ID=AF2,Number=1,Type=Float,Description=\"Max-likelihood estimate of the first and second group ALT allele frequency (assuming HWE)\">");
bcf_hdr_append(call->hdr,"##INFO=<ID=AC1,Number=1,Type=Float,Description=\"Max-likelihood estimate of the first ALT allele count (no HWE assumption)\">");
bcf_hdr_append(call->hdr,"##INFO=<ID=MQ,Number=1,Type=Integer,Description=\"Root-mean-square mapping quality of covering reads\">\n");
bcf_hdr_append(call->hdr,"##INFO=<ID=FQ,Number=1,Type=Float,Description=\"Phred probability of all samples being the same\">\n");
bcf_hdr_append(call->hdr,"##INFO=<ID=PV4,Number=4,Type=Float,Description=\"P-values for strand bias, baseQ bias, mapQ bias and tail distance bias\">\n");
bcf_hdr_append(call->hdr,"##INFO=<ID=G3,Number=3,Type=Float,Description=\"ML estimate of genotype frequencies\">\n");
bcf_hdr_append(call->hdr,"##INFO=<ID=HWE,Number=1,Type=Float,Description=\"Chi^2 based HWE test P-value based on G3\">\n");
// bcf_hdr_append(call->hdr,);
// bcf_hdr_append(call->hdr,);
bcf_hdr_append(call->hdr,"##INFO=<ID=DP4,Number=4,Type=Integer,Description=\"Number of high-quality ref-forward , ref-reverse, alt-forward and alt-reverse bases\">");
return;
}
void ccall_destroy(call_t *call)
{
free(call->itmp);
free(call->als_map);
free(call->gts);
free(call->anno16);
free(call->PLs);
free(call->GQs);
free(call->pdg);
bcf_p1_destroy(call->cdat->p1);
free(call->cdat);
return;
}
// Inits P(D|G): convert PLs from log space, only two alleles (three PLs) are used.
// NB: The original samtools calling code uses pdgs in reverse order (AA comes
// first, RR last), while the -m calling model uses the canonical order.
static void set_pdg3(double *pl2p, int *PLs, double *pdg, int n_smpl, int n_gt)
{
int i;
for (i=0; i<n_smpl; i++)
{
pdg[2] = pl2p[ PLs[0] ];
pdg[1] = pl2p[ PLs[1] ];
pdg[0] = pl2p[ PLs[2] ];
PLs += n_gt;
pdg += 3;
}
}
static double ttest(int n1, int n2, float a[4])
{
extern double kf_betai(double a, double b, double x);
double t, v, u1, u2;
if (n1 == 0 || n2 == 0 || n1 + n2 < 3) return 1.0;
u1 = (double)a[0] / n1; u2 = (double)a[2] / n2;
if (u1 <= u2) return 1.;
t = (u1 - u2) / sqrt(((a[1] - n1 * u1 * u1) + (a[3] - n2 * u2 * u2)) / (n1 + n2 - 2) * (1./n1 + 1./n2));
v = n1 + n2 - 2;
return t < 0.? 1. : .5 * kf_betai(.5*v, .5, v/(v+t*t));
}
static int test16_core(float anno[16], anno16_t *a)
{
extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two);
double left, right;
int i;
a->p[0] = a->p[1] = a->p[2] = a->p[3] = 1.;
for (i=0; i<4; i++) a->d[i] = anno[i];
a->depth = anno[0] + anno[1] + anno[2] + anno[3];
a->is_tested = (anno[0] + anno[1] > 0 && anno[2] + anno[3] > 0);
if (a->depth == 0) return -1;
a->mq = (int)(sqrt((anno[9] + anno[11]) / a->depth) + .499);
kt_fisher_exact(anno[0], anno[1], anno[2], anno[3], &left, &right, &a->p[0]);
for (i = 1; i < 4; ++i)
a->p[i] = ttest(anno[0] + anno[1], anno[2] + anno[3], anno+4*i);
return 0;
}
int test16(float *anno16, anno16_t *a)
{
a->p[0] = a->p[1] = a->p[2] = a->p[3] = 1.;
a->d[0] = a->d[1] = a->d[2] = a->d[3] = 0.;
a->mq = a->depth = a->is_tested = 0;
return test16_core(anno16, a);
}
static int update_bcf1(call_t *call, bcf1_t *rec, const bcf_p1rst_t *pr, double em[10])
{
int has_I16, is_var;
float fq, r;
anno16_t a;
float tmpf[4], tmpi;
bcf_get_info_float(call->hdr, rec, "I16", &call->anno16, &call->n16);
has_I16 = test16(call->anno16, &a) >= 0? 1 : 0;
// print EM
if (em[0] >= 0)
{
tmpf[0] = 1 - em[0];
bcf_update_info_float(call->hdr, rec, "AF1", tmpf, 1);
}
if (em[4] >= 0 && em[4] <= 0.05)
{
tmpf[0] = em[3]; tmpf[1] = em[2]; tmpf[2] = em[1]; tmpf[3] = em[4];
bcf_update_info_float(call->hdr, rec, "G3", tmpf, 3);
bcf_update_info_float(call->hdr, rec, "HWE", &tmpf[3], 1);
}
if (em[5] >= 0 && em[6] >= 0)
{
tmpf[0] = 1 - em[5]; tmpf[1] = 1 - em[6];
bcf_update_info_float(call->hdr, rec, "AF2", tmpf, 2);
}
if (em[7] >= 0)
{
tmpf[0] = em[7];
bcf_update_info_float(call->hdr, rec, "LRT", tmpf, 1);
}
if (em[8] >= 0)
{
tmpf[0] = em[8];
bcf_update_info_float(call->hdr, rec, "LRT2", tmpf, 1);
}
bcf_p1aux_t *p1 = call->cdat->p1;
if (p1->cons_llr > 0)
{
tmpi = p1->cons_llr;
bcf_update_info_int32(call->hdr, rec, "CLR", &tmpi, 1);
// todo: trio calling with -c
if (p1->cons_gt > 0)
{
char tmp[4];
tmp[0] = p1->cons_gt&0xff; tmp[1] = p1->cons_gt>>8&0xff; tmp[2] = p1->cons_gt>>16&0xff; tmp[3] = 0;
bcf_update_info_string(call->hdr, rec, "UGT", tmp);
tmp[0] = p1->cons_gt>>32&0xff; tmp[1] = p1->cons_gt>>40&0xff; tmp[2] = p1->cons_gt>>48&0xff;
bcf_update_info_string(call->hdr, rec, "CGT", tmp);
}
}
is_var = (pr->p_ref < call->pref);
r = is_var? pr->p_ref : pr->p_var;
bcf_update_info_int32(call->hdr, rec, "AC1", &pr->ac, 1);
int32_t dp[4]; dp[0] = call->anno16[0]; dp[1] = call->anno16[1]; dp[2] = call->anno16[2]; dp[3] = call->anno16[3];
bcf_update_info_int32(call->hdr, rec, "DP4", dp, 4);
bcf_update_info_int32(call->hdr, rec, "MQ", &a.mq, 1);
fq = pr->p_ref_folded < 0.5? -4.343 * log(pr->p_ref_folded) : 4.343 * log(pr->p_var_folded);
if (fq < -999) fq = -999;
if (fq > 999) fq = 999;
bcf_update_info_float(call->hdr, rec, "FQ", &fq, 1);
assert( pr->cmp[0]<0 );
// todo
// if (pr->cmp[0] >= 0.) { // two sample groups
// int i, q[3];
// for (i = 1; i < 3; ++i) {
// double x = pr->cmp[i] + pr->cmp[0]/2.;
// q[i] = x == 0? 255 : (int)(-4.343 * log(x) + .499);
// if (q[i] > 255) q[i] = 255;
// }
// if (pr->perm_rank >= 0) ksprintf(&s, "PR=%d;", pr->perm_rank);
//
// ksprintf(&s, "PCHI2=%.3g;PC2=%d,%d;", q[1], q[2], pr->p_chi2);
// }
if (has_I16 && a.is_tested)
{
int i;
for (i=0; i<4; i++) tmpf[i] = a.p[i];
bcf_update_info_float(call->hdr, rec, "PV4", tmpf, 4);
}
bcf_update_info_int32(call->hdr, rec, "I16", NULL, 0); // remove I16 tag
bcf_update_info_int32(call->hdr, rec, "QS", NULL, 0); // remove QS tag
rec->qual = r < 1e-100? 999 : -4.343 * log(r);
if (rec->qual > 999) rec->qual = 999;
// Remove unused alleles
int nals_ori = rec->n_allele, nals = !is_var && !(call->flag & CALL_KEEPALT) ? 1 : pr->rank0 < 2? 2 : pr->rank0+1;
if ( call->flag & CALL_KEEPALT && call->unseen==nals-1 ) nals--;
if ( nals<rec->n_allele )
{
bcf_update_alleles(call->hdr, rec, (const char**)rec->d.allele, nals);
// Update PLs
int npls_src = call->nPLs / rec->n_sample, npls_dst = nals*(nals+1)/2;
int *pls_src = call->PLs - npls_src, *pls_dst = call->PLs - npls_dst;
int isample, i;
for (isample = 0; isample < rec->n_sample; isample++)
{
pls_src += npls_src;
pls_dst += npls_dst;
if ( !call->ploidy || call->ploidy[isample]==2 )
{
for (i=0; i<npls_dst; i++)
pls_dst[i] = pls_src[i];
}
else
{
for (i=0; i<nals; i++)
{
int isrc = (i+1)*(i+2)/2-1;
pls_dst[i] = pls_src[isrc];
}
if (i<npls_dst) pls_dst[i] = bcf_int32_vector_end;
}
}
bcf_update_format_int32(call->hdr, rec, "PL", call->PLs, npls_dst*rec->n_sample);
}
// Call genotypes
int i;
for (i=0; i<rec->n_sample; i++)
{
int x = ( is_var || call->output_tags & CALL_FMT_GQ ) ? bcf_p1_call_gt(p1, pr->f_exp, i, is_var) : 2;
int gt = x&3;
if ( !call->ploidy || call->ploidy[i]==2 )
{
if ( gt==1 )
{
call->gts[2*i] = bcf_gt_unphased(0);
call->gts[2*i+1] = bcf_gt_unphased(1);
}
else if ( gt==0 )
{
call->gts[2*i] = bcf_gt_unphased(1);
call->gts[2*i+1] = bcf_gt_unphased(1);
}
else
{
call->gts[2*i] = bcf_gt_unphased(0);
call->gts[2*i+1] = bcf_gt_unphased(0);
}
if ( call->output_tags & CALL_FMT_GQ ) call->GQs[i] = x>>2;
}
else
{
if ( gt==0 ) call->gts[2*i] = bcf_gt_unphased(1);
else call->gts[2*i] = bcf_gt_unphased(0);
call->gts[2*i+1] = bcf_int32_vector_end;
if ( call->output_tags & CALL_FMT_GQ ) call->GQs[i] = bcf_int32_missing;
}
}
bcf_update_genotypes(call->hdr, rec, call->gts, rec->n_sample*2);
if ( call->output_tags & CALL_FMT_GQ )
bcf_update_format_int32(call->hdr, rec, "GQ", call->GQs, rec->n_sample);
// trim Number=R tags
int out_als = 0;
for (i=0; i<nals; i++) out_als |= 1<<i;
init_allele_trimming_maps(call, nals_ori, out_als);
mcall_trim_and_update_numberR(call, rec, nals_ori, nals);
return is_var;
}
int ccall(call_t *call, bcf1_t *rec)
{
int nsmpl = bcf_hdr_nsamples(call->hdr);
// Get the genotype likelihoods
int nals = rec->n_allele;
call->nPLs = bcf_get_format_int32(call->hdr, rec, "PL", &call->PLs, &call->mPLs);
if ( call->nPLs!=nsmpl*nals*(nals+1)/2 && call->nPLs!=nsmpl*nals ) // diploid+haploid or haploid only
error("Wrong number of PL fields? nals=%d npl=%d\n", nals,call->nPLs);
// Convert PLs to probabilities, only first two alleles are considered
int ngts = nals*(nals+1)/2;
hts_expand(double, 3*nsmpl, call->npdg, call->pdg);
set_pdg3(call->pl2p, call->PLs, call->pdg, nsmpl, ngts);
double em[10] = {-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.};
int ret = bcf_em1(call, rec, call->ngrp1_samples, 0x1ff, em);
bcf_p1rst_t pr;
int do_contrast = (em[7] >= 0 && em[7] < call->min_lrt) ? 1 : 0;
ret = bcf_p1_cal(call, rec, do_contrast, call->cdat->p1, &pr);
if (pr.p_ref >= call->pref && (call->flag & CALL_VARONLY)) return 0;
if (ret >= 0) ret = update_bcf1(call, rec, &pr, em);
return ret;
}
|