File size: 6,933 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
"""
Various transforms used for by the 3D code
"""
import numpy as np
from matplotlib import _api
def world_transformation(xmin, xmax,
ymin, ymax,
zmin, zmax, pb_aspect=None):
"""
Produce a matrix that scales homogeneous coords in the specified ranges
to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified.
"""
dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
if pb_aspect is not None:
ax, ay, az = pb_aspect
dx /= ax
dy /= ay
dz /= az
return np.array([[1/dx, 0, 0, -xmin/dx],
[0, 1/dy, 0, -ymin/dy],
[0, 0, 1/dz, -zmin/dz],
[0, 0, 0, 1]])
@_api.deprecated("3.8")
def rotation_about_vector(v, angle):
"""
Produce a rotation matrix for an angle in radians about a vector.
"""
return _rotation_about_vector(v, angle)
def _rotation_about_vector(v, angle):
"""
Produce a rotation matrix for an angle in radians about a vector.
"""
vx, vy, vz = v / np.linalg.norm(v)
s = np.sin(angle)
c = np.cos(angle)
t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c
R = np.array([
[t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s],
[t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s],
[t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]])
return R
def _view_axes(E, R, V, roll):
"""
Get the unit viewing axes in data coordinates.
Parameters
----------
E : 3-element numpy array
The coordinates of the eye/camera.
R : 3-element numpy array
The coordinates of the center of the view box.
V : 3-element numpy array
Unit vector in the direction of the vertical axis.
roll : float
The roll angle in radians.
Returns
-------
u : 3-element numpy array
Unit vector pointing towards the right of the screen.
v : 3-element numpy array
Unit vector pointing towards the top of the screen.
w : 3-element numpy array
Unit vector pointing out of the screen.
"""
w = (E - R)
w = w/np.linalg.norm(w)
u = np.cross(V, w)
u = u/np.linalg.norm(u)
v = np.cross(w, u) # Will be a unit vector
# Save some computation for the default roll=0
if roll != 0:
# A positive rotation of the camera is a negative rotation of the world
Rroll = _rotation_about_vector(w, -roll)
u = np.dot(Rroll, u)
v = np.dot(Rroll, v)
return u, v, w
def _view_transformation_uvw(u, v, w, E):
"""
Return the view transformation matrix.
Parameters
----------
u : 3-element numpy array
Unit vector pointing towards the right of the screen.
v : 3-element numpy array
Unit vector pointing towards the top of the screen.
w : 3-element numpy array
Unit vector pointing out of the screen.
E : 3-element numpy array
The coordinates of the eye/camera.
"""
Mr = np.eye(4)
Mt = np.eye(4)
Mr[:3, :3] = [u, v, w]
Mt[:3, -1] = -E
M = np.dot(Mr, Mt)
return M
@_api.deprecated("3.8")
def view_transformation(E, R, V, roll):
"""
Return the view transformation matrix.
Parameters
----------
E : 3-element numpy array
The coordinates of the eye/camera.
R : 3-element numpy array
The coordinates of the center of the view box.
V : 3-element numpy array
Unit vector in the direction of the vertical axis.
roll : float
The roll angle in radians.
"""
u, v, w = _view_axes(E, R, V, roll)
M = _view_transformation_uvw(u, v, w, E)
return M
@_api.deprecated("3.8")
def persp_transformation(zfront, zback, focal_length):
return _persp_transformation(zfront, zback, focal_length)
def _persp_transformation(zfront, zback, focal_length):
e = focal_length
a = 1 # aspect ratio
b = (zfront+zback)/(zfront-zback)
c = -2*(zfront*zback)/(zfront-zback)
proj_matrix = np.array([[e, 0, 0, 0],
[0, e/a, 0, 0],
[0, 0, b, c],
[0, 0, -1, 0]])
return proj_matrix
@_api.deprecated("3.8")
def ortho_transformation(zfront, zback):
return _ortho_transformation(zfront, zback)
def _ortho_transformation(zfront, zback):
# note: w component in the resulting vector will be (zback-zfront), not 1
a = -(zfront + zback)
b = -(zfront - zback)
proj_matrix = np.array([[2, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, -2, 0],
[0, 0, a, b]])
return proj_matrix
def _proj_transform_vec(vec, M):
vecw = np.dot(M, vec)
w = vecw[3]
# clip here..
txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
return txs, tys, tzs
def _proj_transform_vec_clip(vec, M):
vecw = np.dot(M, vec)
w = vecw[3]
# clip here.
txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1)
if np.any(tis):
tis = vecw[1] < 1
return txs, tys, tzs, tis
def inv_transform(xs, ys, zs, invM):
"""
Transform the points by the inverse of the projection matrix, *invM*.
"""
vec = _vec_pad_ones(xs, ys, zs)
vecr = np.dot(invM, vec)
if vecr.shape == (4,):
vecr = vecr.reshape((4, 1))
for i in range(vecr.shape[1]):
if vecr[3][i] != 0:
vecr[:, i] = vecr[:, i] / vecr[3][i]
return vecr[0], vecr[1], vecr[2]
def _vec_pad_ones(xs, ys, zs):
return np.array([xs, ys, zs, np.ones_like(xs)])
def proj_transform(xs, ys, zs, M):
"""
Transform the points by the projection matrix *M*.
"""
vec = _vec_pad_ones(xs, ys, zs)
return _proj_transform_vec(vec, M)
transform = _api.deprecated(
"3.8", obj_type="function", name="transform",
alternative="proj_transform")(proj_transform)
def proj_transform_clip(xs, ys, zs, M):
"""
Transform the points by the projection matrix
and return the clipping result
returns txs, tys, tzs, tis
"""
vec = _vec_pad_ones(xs, ys, zs)
return _proj_transform_vec_clip(vec, M)
@_api.deprecated("3.8")
def proj_points(points, M):
return _proj_points(points, M)
def _proj_points(points, M):
return np.column_stack(_proj_trans_points(points, M))
@_api.deprecated("3.8")
def proj_trans_points(points, M):
return _proj_trans_points(points, M)
def _proj_trans_points(points, M):
xs, ys, zs = zip(*points)
return proj_transform(xs, ys, zs, M)
@_api.deprecated("3.8")
def rot_x(V, alpha):
cosa, sina = np.cos(alpha), np.sin(alpha)
M1 = np.array([[1, 0, 0, 0],
[0, cosa, -sina, 0],
[0, sina, cosa, 0],
[0, 0, 0, 1]])
return np.dot(M1, V)
|