File size: 129,991 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 |
"""
axes3d.py, original mplot3d version by John Porter
Created: 23 Sep 2005
Parts fixed by Reinier Heeres <[email protected]>
Minor additions by Ben Axelrod <[email protected]>
Significant updates and revisions by Ben Root <[email protected]>
Module containing Axes3D, an object which can plot 3D objects on a
2D matplotlib figure.
"""
from collections import defaultdict
import functools
import itertools
import math
import textwrap
import numpy as np
import matplotlib as mpl
from matplotlib import _api, cbook, _docstring, _preprocess_data
import matplotlib.artist as martist
import matplotlib.axes as maxes
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.image as mimage
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.container as mcontainer
import matplotlib.transforms as mtransforms
from matplotlib.axes import Axes
from matplotlib.axes._base import _axis_method_wrapper, _process_plot_format
from matplotlib.transforms import Bbox
from matplotlib.tri._triangulation import Triangulation
from . import art3d
from . import proj3d
from . import axis3d
@_docstring.interpd
@_api.define_aliases({
"xlim": ["xlim3d"], "ylim": ["ylim3d"], "zlim": ["zlim3d"]})
class Axes3D(Axes):
"""
3D Axes object.
.. note::
As a user, you do not instantiate Axes directly, but use Axes creation
methods instead; e.g. from `.pyplot` or `.Figure`:
`~.pyplot.subplots`, `~.pyplot.subplot_mosaic` or `.Figure.add_axes`.
"""
name = '3d'
_axis_names = ("x", "y", "z")
Axes._shared_axes["z"] = cbook.Grouper()
Axes._shared_axes["view"] = cbook.Grouper()
vvec = _api.deprecate_privatize_attribute("3.7")
eye = _api.deprecate_privatize_attribute("3.7")
sx = _api.deprecate_privatize_attribute("3.7")
sy = _api.deprecate_privatize_attribute("3.7")
def __init__(
self, fig, rect=None, *args,
elev=30, azim=-60, roll=0, sharez=None, proj_type='persp',
box_aspect=None, computed_zorder=True, focal_length=None,
shareview=None,
**kwargs):
"""
Parameters
----------
fig : Figure
The parent figure.
rect : tuple (left, bottom, width, height), default: None.
The ``(left, bottom, width, height)`` axes position.
elev : float, default: 30
The elevation angle in degrees rotates the camera above and below
the x-y plane, with a positive angle corresponding to a location
above the plane.
azim : float, default: -60
The azimuthal angle in degrees rotates the camera about the z axis,
with a positive angle corresponding to a right-handed rotation. In
other words, a positive azimuth rotates the camera about the origin
from its location along the +x axis towards the +y axis.
roll : float, default: 0
The roll angle in degrees rotates the camera about the viewing
axis. A positive angle spins the camera clockwise, causing the
scene to rotate counter-clockwise.
sharez : Axes3D, optional
Other Axes to share z-limits with.
proj_type : {'persp', 'ortho'}
The projection type, default 'persp'.
box_aspect : 3-tuple of floats, default: None
Changes the physical dimensions of the Axes3D, such that the ratio
of the axis lengths in display units is x:y:z.
If None, defaults to 4:4:3
computed_zorder : bool, default: True
If True, the draw order is computed based on the average position
of the `.Artist`\\s along the view direction.
Set to False if you want to manually control the order in which
Artists are drawn on top of each other using their *zorder*
attribute. This can be used for fine-tuning if the automatic order
does not produce the desired result. Note however, that a manual
zorder will only be correct for a limited view angle. If the figure
is rotated by the user, it will look wrong from certain angles.
focal_length : float, default: None
For a projection type of 'persp', the focal length of the virtual
camera. Must be > 0. If None, defaults to 1.
For a projection type of 'ortho', must be set to either None
or infinity (numpy.inf). If None, defaults to infinity.
The focal length can be computed from a desired Field Of View via
the equation: focal_length = 1/tan(FOV/2)
shareview : Axes3D, optional
Other Axes to share view angles with.
**kwargs
Other optional keyword arguments:
%(Axes3D:kwdoc)s
"""
if rect is None:
rect = [0.0, 0.0, 1.0, 1.0]
self.initial_azim = azim
self.initial_elev = elev
self.initial_roll = roll
self.set_proj_type(proj_type, focal_length)
self.computed_zorder = computed_zorder
self.xy_viewLim = Bbox.unit()
self.zz_viewLim = Bbox.unit()
self.xy_dataLim = Bbox.unit()
# z-limits are encoded in the x-component of the Bbox, y is un-used
self.zz_dataLim = Bbox.unit()
# inhibit autoscale_view until the axes are defined
# they can't be defined until Axes.__init__ has been called
self.view_init(self.initial_elev, self.initial_azim, self.initial_roll)
self._sharez = sharez
if sharez is not None:
self._shared_axes["z"].join(self, sharez)
self._adjustable = 'datalim'
self._shareview = shareview
if shareview is not None:
self._shared_axes["view"].join(self, shareview)
if kwargs.pop('auto_add_to_figure', False):
raise AttributeError(
'auto_add_to_figure is no longer supported for Axes3D. '
'Use fig.add_axes(ax) instead.'
)
super().__init__(
fig, rect, frameon=True, box_aspect=box_aspect, *args, **kwargs
)
# Disable drawing of axes by base class
super().set_axis_off()
# Enable drawing of axes by Axes3D class
self.set_axis_on()
self.M = None
self.invM = None
# func used to format z -- fall back on major formatters
self.fmt_zdata = None
self.mouse_init()
self.figure.canvas.callbacks._connect_picklable(
'motion_notify_event', self._on_move)
self.figure.canvas.callbacks._connect_picklable(
'button_press_event', self._button_press)
self.figure.canvas.callbacks._connect_picklable(
'button_release_event', self._button_release)
self.set_top_view()
self.patch.set_linewidth(0)
# Calculate the pseudo-data width and height
pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]
# mplot3d currently manages its own spines and needs these turned off
# for bounding box calculations
self.spines[:].set_visible(False)
def set_axis_off(self):
self._axis3don = False
self.stale = True
def set_axis_on(self):
self._axis3don = True
self.stale = True
def convert_zunits(self, z):
"""
For artists in an Axes, if the zaxis has units support,
convert *z* using zaxis unit type
"""
return self.zaxis.convert_units(z)
def set_top_view(self):
# this happens to be the right view for the viewing coordinates
# moved up and to the left slightly to fit labels and axes
xdwl = 0.95 / self._dist
xdw = 0.9 / self._dist
ydwl = 0.95 / self._dist
ydw = 0.9 / self._dist
# Set the viewing pane.
self.viewLim.intervalx = (-xdwl, xdw)
self.viewLim.intervaly = (-ydwl, ydw)
self.stale = True
def _init_axis(self):
"""Init 3D axes; overrides creation of regular X/Y axes."""
self.xaxis = axis3d.XAxis(self)
self.yaxis = axis3d.YAxis(self)
self.zaxis = axis3d.ZAxis(self)
def get_zaxis(self):
"""Return the ``ZAxis`` (`~.axis3d.Axis`) instance."""
return self.zaxis
get_zgridlines = _axis_method_wrapper("zaxis", "get_gridlines")
get_zticklines = _axis_method_wrapper("zaxis", "get_ticklines")
@_api.deprecated("3.7")
def unit_cube(self, vals=None):
return self._unit_cube(vals)
def _unit_cube(self, vals=None):
minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
return [(minx, miny, minz),
(maxx, miny, minz),
(maxx, maxy, minz),
(minx, maxy, minz),
(minx, miny, maxz),
(maxx, miny, maxz),
(maxx, maxy, maxz),
(minx, maxy, maxz)]
@_api.deprecated("3.7")
def tunit_cube(self, vals=None, M=None):
return self._tunit_cube(vals, M)
def _tunit_cube(self, vals=None, M=None):
if M is None:
M = self.M
xyzs = self._unit_cube(vals)
tcube = proj3d._proj_points(xyzs, M)
return tcube
@_api.deprecated("3.7")
def tunit_edges(self, vals=None, M=None):
return self._tunit_edges(vals, M)
def _tunit_edges(self, vals=None, M=None):
tc = self._tunit_cube(vals, M)
edges = [(tc[0], tc[1]),
(tc[1], tc[2]),
(tc[2], tc[3]),
(tc[3], tc[0]),
(tc[0], tc[4]),
(tc[1], tc[5]),
(tc[2], tc[6]),
(tc[3], tc[7]),
(tc[4], tc[5]),
(tc[5], tc[6]),
(tc[6], tc[7]),
(tc[7], tc[4])]
return edges
def set_aspect(self, aspect, adjustable=None, anchor=None, share=False):
"""
Set the aspect ratios.
Parameters
----------
aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
Possible values:
========= ==================================================
value description
========= ==================================================
'auto' automatic; fill the position rectangle with data.
'equal' adapt all the axes to have equal aspect ratios.
'equalxy' adapt the x and y axes to have equal aspect ratios.
'equalxz' adapt the x and z axes to have equal aspect ratios.
'equalyz' adapt the y and z axes to have equal aspect ratios.
========= ==================================================
adjustable : None or {'box', 'datalim'}, optional
If not *None*, this defines which parameter will be adjusted to
meet the required aspect. See `.set_adjustable` for further
details.
anchor : None or str or 2-tuple of float, optional
If not *None*, this defines where the Axes will be drawn if there
is extra space due to aspect constraints. The most common way to
specify the anchor are abbreviations of cardinal directions:
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
See `~.Axes.set_anchor` for further details.
share : bool, default: False
If ``True``, apply the settings to all shared Axes.
See Also
--------
mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect
"""
_api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'),
aspect=aspect)
super().set_aspect(
aspect='auto', adjustable=adjustable, anchor=anchor, share=share)
self._aspect = aspect
if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
ax_indices = self._equal_aspect_axis_indices(aspect)
view_intervals = np.array([self.xaxis.get_view_interval(),
self.yaxis.get_view_interval(),
self.zaxis.get_view_interval()])
ptp = np.ptp(view_intervals, axis=1)
if self._adjustable == 'datalim':
mean = np.mean(view_intervals, axis=1)
scale = max(ptp[ax_indices] / self._box_aspect[ax_indices])
deltas = scale * self._box_aspect
for i, set_lim in enumerate((self.set_xlim3d,
self.set_ylim3d,
self.set_zlim3d)):
if i in ax_indices:
set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.)
else: # 'box'
# Change the box aspect such that the ratio of the length of
# the unmodified axis to the length of the diagonal
# perpendicular to it remains unchanged.
box_aspect = np.array(self._box_aspect)
box_aspect[ax_indices] = ptp[ax_indices]
remaining_ax_indices = {0, 1, 2}.difference(ax_indices)
if remaining_ax_indices:
remaining = remaining_ax_indices.pop()
old_diag = np.linalg.norm(self._box_aspect[ax_indices])
new_diag = np.linalg.norm(box_aspect[ax_indices])
box_aspect[remaining] *= new_diag / old_diag
self.set_box_aspect(box_aspect)
def _equal_aspect_axis_indices(self, aspect):
"""
Get the indices for which of the x, y, z axes are constrained to have
equal aspect ratios.
Parameters
----------
aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
See descriptions in docstring for `.set_aspect()`.
"""
ax_indices = [] # aspect == 'auto'
if aspect == 'equal':
ax_indices = [0, 1, 2]
elif aspect == 'equalxy':
ax_indices = [0, 1]
elif aspect == 'equalxz':
ax_indices = [0, 2]
elif aspect == 'equalyz':
ax_indices = [1, 2]
return ax_indices
def set_box_aspect(self, aspect, *, zoom=1):
"""
Set the Axes box aspect.
The box aspect is the ratio of height to width in display
units for each face of the box when viewed perpendicular to
that face. This is not to be confused with the data aspect (see
`~.Axes3D.set_aspect`). The default ratios are 4:4:3 (x:y:z).
To simulate having equal aspect in data space, set the box
aspect to match your data range in each dimension.
*zoom* controls the overall size of the Axes3D in the figure.
Parameters
----------
aspect : 3-tuple of floats or None
Changes the physical dimensions of the Axes3D, such that the ratio
of the axis lengths in display units is x:y:z.
If None, defaults to (4, 4, 3).
zoom : float, default: 1
Control overall size of the Axes3D in the figure. Must be > 0.
"""
if zoom <= 0:
raise ValueError(f'Argument zoom = {zoom} must be > 0')
if aspect is None:
aspect = np.asarray((4, 4, 3), dtype=float)
else:
aspect = np.asarray(aspect, dtype=float)
_api.check_shape((3,), aspect=aspect)
# default scale tuned to match the mpl32 appearance.
aspect *= 1.8294640721620434 * zoom / np.linalg.norm(aspect)
self._box_aspect = aspect
self.stale = True
def apply_aspect(self, position=None):
if position is None:
position = self.get_position(original=True)
# in the superclass, we would go through and actually deal with axis
# scales and box/datalim. Those are all irrelevant - all we need to do
# is make sure our coordinate system is square.
trans = self.get_figure().transSubfigure
bb = mtransforms.Bbox.unit().transformed(trans)
# this is the physical aspect of the panel (or figure):
fig_aspect = bb.height / bb.width
box_aspect = 1
pb = position.frozen()
pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
self._set_position(pb1.anchored(self.get_anchor(), pb), 'active')
@martist.allow_rasterization
def draw(self, renderer):
if not self.get_visible():
return
self._unstale_viewLim()
# draw the background patch
self.patch.draw(renderer)
self._frameon = False
# first, set the aspect
# this is duplicated from `axes._base._AxesBase.draw`
# but must be called before any of the artist are drawn as
# it adjusts the view limits and the size of the bounding box
# of the Axes
locator = self.get_axes_locator()
self.apply_aspect(locator(self, renderer) if locator else None)
# add the projection matrix to the renderer
self.M = self.get_proj()
self.invM = np.linalg.inv(self.M)
collections_and_patches = (
artist for artist in self._children
if isinstance(artist, (mcoll.Collection, mpatches.Patch))
and artist.get_visible())
if self.computed_zorder:
# Calculate projection of collections and patches and zorder
# them. Make sure they are drawn above the grids.
zorder_offset = max(axis.get_zorder()
for axis in self._axis_map.values()) + 1
collection_zorder = patch_zorder = zorder_offset
for artist in sorted(collections_and_patches,
key=lambda artist: artist.do_3d_projection(),
reverse=True):
if isinstance(artist, mcoll.Collection):
artist.zorder = collection_zorder
collection_zorder += 1
elif isinstance(artist, mpatches.Patch):
artist.zorder = patch_zorder
patch_zorder += 1
else:
for artist in collections_and_patches:
artist.do_3d_projection()
if self._axis3don:
# Draw panes first
for axis in self._axis_map.values():
axis.draw_pane(renderer)
# Then gridlines
for axis in self._axis_map.values():
axis.draw_grid(renderer)
# Then axes, labels, text, and ticks
for axis in self._axis_map.values():
axis.draw(renderer)
# Then rest
super().draw(renderer)
def get_axis_position(self):
vals = self.get_w_lims()
tc = self._tunit_cube(vals, self.M)
xhigh = tc[1][2] > tc[2][2]
yhigh = tc[3][2] > tc[2][2]
zhigh = tc[0][2] > tc[2][2]
return xhigh, yhigh, zhigh
def update_datalim(self, xys, **kwargs):
"""
Not implemented in `~mpl_toolkits.mplot3d.axes3d.Axes3D`.
"""
pass
get_autoscalez_on = _axis_method_wrapper("zaxis", "_get_autoscale_on")
set_autoscalez_on = _axis_method_wrapper("zaxis", "_set_autoscale_on")
def set_zmargin(self, m):
"""
Set padding of Z data limits prior to autoscaling.
*m* times the data interval will be added to each end of that interval
before it is used in autoscaling. If *m* is negative, this will clip
the data range instead of expanding it.
For example, if your data is in the range [0, 2], a margin of 0.1 will
result in a range [-0.2, 2.2]; a margin of -0.1 will result in a range
of [0.2, 1.8].
Parameters
----------
m : float greater than -0.5
"""
if m <= -0.5:
raise ValueError("margin must be greater than -0.5")
self._zmargin = m
self._request_autoscale_view("z")
self.stale = True
def margins(self, *margins, x=None, y=None, z=None, tight=True):
"""
Set or retrieve autoscaling margins.
See `.Axes.margins` for full documentation. Because this function
applies to 3D Axes, it also takes a *z* argument, and returns
``(xmargin, ymargin, zmargin)``.
"""
if margins and (x is not None or y is not None or z is not None):
raise TypeError('Cannot pass both positional and keyword '
'arguments for x, y, and/or z.')
elif len(margins) == 1:
x = y = z = margins[0]
elif len(margins) == 3:
x, y, z = margins
elif margins:
raise TypeError('Must pass a single positional argument for all '
'margins, or one for each margin (x, y, z).')
if x is None and y is None and z is None:
if tight is not True:
_api.warn_external(f'ignoring tight={tight!r} in get mode')
return self._xmargin, self._ymargin, self._zmargin
if x is not None:
self.set_xmargin(x)
if y is not None:
self.set_ymargin(y)
if z is not None:
self.set_zmargin(z)
self.autoscale_view(
tight=tight, scalex=(x is not None), scaley=(y is not None),
scalez=(z is not None)
)
def autoscale(self, enable=True, axis='both', tight=None):
"""
Convenience method for simple axis view autoscaling.
See `.Axes.autoscale` for full documentation. Because this function
applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
to 'both' autoscales all three axes.
"""
if enable is None:
scalex = True
scaley = True
scalez = True
else:
if axis in ['x', 'both']:
self.set_autoscalex_on(bool(enable))
scalex = self.get_autoscalex_on()
else:
scalex = False
if axis in ['y', 'both']:
self.set_autoscaley_on(bool(enable))
scaley = self.get_autoscaley_on()
else:
scaley = False
if axis in ['z', 'both']:
self.set_autoscalez_on(bool(enable))
scalez = self.get_autoscalez_on()
else:
scalez = False
if scalex:
self._request_autoscale_view("x", tight=tight)
if scaley:
self._request_autoscale_view("y", tight=tight)
if scalez:
self._request_autoscale_view("z", tight=tight)
def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
# This updates the bounding boxes as to keep a record as to what the
# minimum sized rectangular volume holds the data.
if np.shape(X) == np.shape(Y):
self.xy_dataLim.update_from_data_xy(
np.column_stack([np.ravel(X), np.ravel(Y)]), not had_data)
else:
self.xy_dataLim.update_from_data_x(X, not had_data)
self.xy_dataLim.update_from_data_y(Y, not had_data)
if Z is not None:
self.zz_dataLim.update_from_data_x(Z, not had_data)
# Let autoscale_view figure out how to use this data.
self.autoscale_view()
def autoscale_view(self, tight=None, scalex=True, scaley=True,
scalez=True):
"""
Autoscale the view limits using the data limits.
See `.Axes.autoscale_view` for full documentation. Because this
function applies to 3D Axes, it also takes a *scalez* argument.
"""
# This method looks at the rectangular volume (see above)
# of data and decides how to scale the view portal to fit it.
if tight is None:
_tight = self._tight
if not _tight:
# if image data only just use the datalim
for artist in self._children:
if isinstance(artist, mimage.AxesImage):
_tight = True
elif isinstance(artist, (mlines.Line2D, mpatches.Patch)):
_tight = False
break
else:
_tight = self._tight = bool(tight)
if scalex and self.get_autoscalex_on():
x0, x1 = self.xy_dataLim.intervalx
xlocator = self.xaxis.get_major_locator()
x0, x1 = xlocator.nonsingular(x0, x1)
if self._xmargin > 0:
delta = (x1 - x0) * self._xmargin
x0 -= delta
x1 += delta
if not _tight:
x0, x1 = xlocator.view_limits(x0, x1)
self.set_xbound(x0, x1)
if scaley and self.get_autoscaley_on():
y0, y1 = self.xy_dataLim.intervaly
ylocator = self.yaxis.get_major_locator()
y0, y1 = ylocator.nonsingular(y0, y1)
if self._ymargin > 0:
delta = (y1 - y0) * self._ymargin
y0 -= delta
y1 += delta
if not _tight:
y0, y1 = ylocator.view_limits(y0, y1)
self.set_ybound(y0, y1)
if scalez and self.get_autoscalez_on():
z0, z1 = self.zz_dataLim.intervalx
zlocator = self.zaxis.get_major_locator()
z0, z1 = zlocator.nonsingular(z0, z1)
if self._zmargin > 0:
delta = (z1 - z0) * self._zmargin
z0 -= delta
z1 += delta
if not _tight:
z0, z1 = zlocator.view_limits(z0, z1)
self.set_zbound(z0, z1)
def get_w_lims(self):
"""Get 3D world limits."""
minx, maxx = self.get_xlim3d()
miny, maxy = self.get_ylim3d()
minz, maxz = self.get_zlim3d()
return minx, maxx, miny, maxy, minz, maxz
# set_xlim, set_ylim are directly inherited from base Axes.
def set_zlim(self, bottom=None, top=None, *, emit=True, auto=False,
zmin=None, zmax=None):
"""
Set 3D z limits.
See `.Axes.set_ylim` for full documentation
"""
if top is None and np.iterable(bottom):
bottom, top = bottom
if zmin is not None:
if bottom is not None:
raise TypeError("Cannot pass both 'bottom' and 'zmin'")
bottom = zmin
if zmax is not None:
if top is not None:
raise TypeError("Cannot pass both 'top' and 'zmax'")
top = zmax
return self.zaxis._set_lim(bottom, top, emit=emit, auto=auto)
set_xlim3d = maxes.Axes.set_xlim
set_ylim3d = maxes.Axes.set_ylim
set_zlim3d = set_zlim
def get_xlim(self):
# docstring inherited
return tuple(self.xy_viewLim.intervalx)
def get_ylim(self):
# docstring inherited
return tuple(self.xy_viewLim.intervaly)
def get_zlim(self):
"""
Return the 3D z-axis view limits.
Returns
-------
left, right : (float, float)
The current z-axis limits in data coordinates.
See Also
--------
set_zlim
set_zbound, get_zbound
invert_zaxis, zaxis_inverted
Notes
-----
The z-axis may be inverted, in which case the *left* value will
be greater than the *right* value.
"""
return tuple(self.zz_viewLim.intervalx)
get_zscale = _axis_method_wrapper("zaxis", "get_scale")
# Redefine all three methods to overwrite their docstrings.
set_xscale = _axis_method_wrapper("xaxis", "_set_axes_scale")
set_yscale = _axis_method_wrapper("yaxis", "_set_axes_scale")
set_zscale = _axis_method_wrapper("zaxis", "_set_axes_scale")
set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map(
"""
Set the {}-axis scale.
Parameters
----------
value : {{"linear"}}
The axis scale type to apply. 3D axes currently only support
linear scales; other scales yield nonsensical results.
**kwargs
Keyword arguments are nominally forwarded to the scale class, but
none of them is applicable for linear scales.
""".format,
["x", "y", "z"])
get_zticks = _axis_method_wrapper("zaxis", "get_ticklocs")
set_zticks = _axis_method_wrapper("zaxis", "set_ticks")
get_zmajorticklabels = _axis_method_wrapper("zaxis", "get_majorticklabels")
get_zminorticklabels = _axis_method_wrapper("zaxis", "get_minorticklabels")
get_zticklabels = _axis_method_wrapper("zaxis", "get_ticklabels")
set_zticklabels = _axis_method_wrapper(
"zaxis", "set_ticklabels",
doc_sub={"Axis.set_ticks": "Axes3D.set_zticks"})
zaxis_date = _axis_method_wrapper("zaxis", "axis_date")
if zaxis_date.__doc__:
zaxis_date.__doc__ += textwrap.dedent("""
Notes
-----
This function is merely provided for completeness, but 3D axes do not
support dates for ticks, and so this may not work as expected.
""")
def clabel(self, *args, **kwargs):
"""Currently not implemented for 3D axes, and returns *None*."""
return None
def view_init(self, elev=None, azim=None, roll=None, vertical_axis="z",
share=False):
"""
Set the elevation and azimuth of the axes in degrees (not radians).
This can be used to rotate the axes programmatically.
To look normal to the primary planes, the following elevation and
azimuth angles can be used. A roll angle of 0, 90, 180, or 270 deg
will rotate these views while keeping the axes at right angles.
========== ==== ====
view plane elev azim
========== ==== ====
XY 90 -90
XZ 0 -90
YZ 0 0
-XY -90 90
-XZ 0 90
-YZ 0 180
========== ==== ====
Parameters
----------
elev : float, default: None
The elevation angle in degrees rotates the camera above the plane
pierced by the vertical axis, with a positive angle corresponding
to a location above that plane. For example, with the default
vertical axis of 'z', the elevation defines the angle of the camera
location above the x-y plane.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
azim : float, default: None
The azimuthal angle in degrees rotates the camera about the
vertical axis, with a positive angle corresponding to a
right-handed rotation. For example, with the default vertical axis
of 'z', a positive azimuth rotates the camera about the origin from
its location along the +x axis towards the +y axis.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
roll : float, default: None
The roll angle in degrees rotates the camera about the viewing
axis. A positive angle spins the camera clockwise, causing the
scene to rotate counter-clockwise.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
vertical_axis : {"z", "x", "y"}, default: "z"
The axis to align vertically. *azim* rotates about this axis.
share : bool, default: False
If ``True``, apply the settings to all Axes with shared views.
"""
self._dist = 10 # The camera distance from origin. Behaves like zoom
if elev is None:
elev = self.initial_elev
if azim is None:
azim = self.initial_azim
if roll is None:
roll = self.initial_roll
vertical_axis = _api.check_getitem(
dict(x=0, y=1, z=2), vertical_axis=vertical_axis
)
if share:
axes = {sibling for sibling
in self._shared_axes['view'].get_siblings(self)}
else:
axes = [self]
for ax in axes:
ax.elev = elev
ax.azim = azim
ax.roll = roll
ax._vertical_axis = vertical_axis
def set_proj_type(self, proj_type, focal_length=None):
"""
Set the projection type.
Parameters
----------
proj_type : {'persp', 'ortho'}
The projection type.
focal_length : float, default: None
For a projection type of 'persp', the focal length of the virtual
camera. Must be > 0. If None, defaults to 1.
The focal length can be computed from a desired Field Of View via
the equation: focal_length = 1/tan(FOV/2)
"""
_api.check_in_list(['persp', 'ortho'], proj_type=proj_type)
if proj_type == 'persp':
if focal_length is None:
focal_length = 1
elif focal_length <= 0:
raise ValueError(f"focal_length = {focal_length} must be "
"greater than 0")
self._focal_length = focal_length
else: # 'ortho':
if focal_length not in (None, np.inf):
raise ValueError(f"focal_length = {focal_length} must be "
f"None for proj_type = {proj_type}")
self._focal_length = np.inf
def _roll_to_vertical(self, arr):
"""Roll arrays to match the different vertical axis."""
return np.roll(arr, self._vertical_axis - 2)
def get_proj(self):
"""Create the projection matrix from the current viewing position."""
# Transform to uniform world coordinates 0-1, 0-1, 0-1
box_aspect = self._roll_to_vertical(self._box_aspect)
worldM = proj3d.world_transformation(
*self.get_xlim3d(),
*self.get_ylim3d(),
*self.get_zlim3d(),
pb_aspect=box_aspect,
)
# Look into the middle of the world coordinates:
R = 0.5 * box_aspect
# elev: elevation angle in the z plane.
# azim: azimuth angle in the xy plane.
# Coordinates for a point that rotates around the box of data.
# p0, p1 corresponds to rotating the box only around the vertical axis.
# p2 corresponds to rotating the box only around the horizontal axis.
elev_rad = np.deg2rad(self.elev)
azim_rad = np.deg2rad(self.azim)
p0 = np.cos(elev_rad) * np.cos(azim_rad)
p1 = np.cos(elev_rad) * np.sin(azim_rad)
p2 = np.sin(elev_rad)
# When changing vertical axis the coordinates changes as well.
# Roll the values to get the same behaviour as the default:
ps = self._roll_to_vertical([p0, p1, p2])
# The coordinates for the eye viewing point. The eye is looking
# towards the middle of the box of data from a distance:
eye = R + self._dist * ps
# vvec, self._vvec and self._eye are unused, remove when deprecated
vvec = R - eye
self._eye = eye
self._vvec = vvec / np.linalg.norm(vvec)
# Calculate the viewing axes for the eye position
u, v, w = self._calc_view_axes(eye)
self._view_u = u # _view_u is towards the right of the screen
self._view_v = v # _view_v is towards the top of the screen
self._view_w = w # _view_w is out of the screen
# Generate the view and projection transformation matrices
if self._focal_length == np.inf:
# Orthographic projection
viewM = proj3d._view_transformation_uvw(u, v, w, eye)
projM = proj3d._ortho_transformation(-self._dist, self._dist)
else:
# Perspective projection
# Scale the eye dist to compensate for the focal length zoom effect
eye_focal = R + self._dist * ps * self._focal_length
viewM = proj3d._view_transformation_uvw(u, v, w, eye_focal)
projM = proj3d._persp_transformation(-self._dist,
self._dist,
self._focal_length)
# Combine all the transformation matrices to get the final projection
M0 = np.dot(viewM, worldM)
M = np.dot(projM, M0)
return M
def mouse_init(self, rotate_btn=1, pan_btn=2, zoom_btn=3):
"""
Set the mouse buttons for 3D rotation and zooming.
Parameters
----------
rotate_btn : int or list of int, default: 1
The mouse button or buttons to use for 3D rotation of the axes.
pan_btn : int or list of int, default: 2
The mouse button or buttons to use to pan the 3D axes.
zoom_btn : int or list of int, default: 3
The mouse button or buttons to use to zoom the 3D axes.
"""
self.button_pressed = None
# coerce scalars into array-like, then convert into
# a regular list to avoid comparisons against None
# which breaks in recent versions of numpy.
self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
self._pan_btn = np.atleast_1d(pan_btn).tolist()
self._zoom_btn = np.atleast_1d(zoom_btn).tolist()
def disable_mouse_rotation(self):
"""Disable mouse buttons for 3D rotation, panning, and zooming."""
self.mouse_init(rotate_btn=[], pan_btn=[], zoom_btn=[])
def can_zoom(self):
# doc-string inherited
return True
def can_pan(self):
# doc-string inherited
return True
def sharez(self, other):
"""
Share the z-axis with *other*.
This is equivalent to passing ``sharez=other`` when constructing the
Axes, and cannot be used if the z-axis is already being shared with
another Axes.
"""
_api.check_isinstance(Axes3D, other=other)
if self._sharez is not None and other is not self._sharez:
raise ValueError("z-axis is already shared")
self._shared_axes["z"].join(self, other)
self._sharez = other
self.zaxis.major = other.zaxis.major # Ticker instances holding
self.zaxis.minor = other.zaxis.minor # locator and formatter.
z0, z1 = other.get_zlim()
self.set_zlim(z0, z1, emit=False, auto=other.get_autoscalez_on())
self.zaxis._scale = other.zaxis._scale
def shareview(self, other):
"""
Share the view angles with *other*.
This is equivalent to passing ``shareview=other`` when
constructing the Axes, and cannot be used if the view angles are
already being shared with another Axes.
"""
_api.check_isinstance(Axes3D, other=other)
if self._shareview is not None and other is not self._shareview:
raise ValueError("view angles are already shared")
self._shared_axes["view"].join(self, other)
self._shareview = other
vertical_axis = {0: "x", 1: "y", 2: "z"}[other._vertical_axis]
self.view_init(elev=other.elev, azim=other.azim, roll=other.roll,
vertical_axis=vertical_axis, share=True)
def clear(self):
# docstring inherited.
super().clear()
if self._focal_length == np.inf:
self._zmargin = mpl.rcParams['axes.zmargin']
else:
self._zmargin = 0.
self.grid(mpl.rcParams['axes3d.grid'])
def _button_press(self, event):
if event.inaxes == self:
self.button_pressed = event.button
self._sx, self._sy = event.xdata, event.ydata
toolbar = self.figure.canvas.toolbar
if toolbar and toolbar._nav_stack() is None:
toolbar.push_current()
def _button_release(self, event):
self.button_pressed = None
toolbar = self.figure.canvas.toolbar
# backend_bases.release_zoom and backend_bases.release_pan call
# push_current, so check the navigation mode so we don't call it twice
if toolbar and self.get_navigate_mode() is None:
toolbar.push_current()
def _get_view(self):
# docstring inherited
return {
"xlim": self.get_xlim(), "autoscalex_on": self.get_autoscalex_on(),
"ylim": self.get_ylim(), "autoscaley_on": self.get_autoscaley_on(),
"zlim": self.get_zlim(), "autoscalez_on": self.get_autoscalez_on(),
}, (self.elev, self.azim, self.roll)
def _set_view(self, view):
# docstring inherited
props, (elev, azim, roll) = view
self.set(**props)
self.elev = elev
self.azim = azim
self.roll = roll
def format_zdata(self, z):
"""
Return *z* string formatted. This function will use the
:attr:`fmt_zdata` attribute if it is callable, else will fall
back on the zaxis major formatter
"""
try:
return self.fmt_zdata(z)
except (AttributeError, TypeError):
func = self.zaxis.get_major_formatter().format_data_short
val = func(z)
return val
def format_coord(self, xv, yv, renderer=None):
"""
Return a string giving the current view rotation angles, or the x, y, z
coordinates of the point on the nearest axis pane underneath the mouse
cursor, depending on the mouse button pressed.
"""
coords = ''
if self.button_pressed in self._rotate_btn:
# ignore xv and yv and display angles instead
coords = self._rotation_coords()
elif self.M is not None:
coords = self._location_coords(xv, yv, renderer)
return coords
def _rotation_coords(self):
"""
Return the rotation angles as a string.
"""
norm_elev = art3d._norm_angle(self.elev)
norm_azim = art3d._norm_angle(self.azim)
norm_roll = art3d._norm_angle(self.roll)
coords = (f"elevation={norm_elev:.0f}\N{DEGREE SIGN}, "
f"azimuth={norm_azim:.0f}\N{DEGREE SIGN}, "
f"roll={norm_roll:.0f}\N{DEGREE SIGN}"
).replace("-", "\N{MINUS SIGN}")
return coords
def _location_coords(self, xv, yv, renderer):
"""
Return the location on the axis pane underneath the cursor as a string.
"""
p1, pane_idx = self._calc_coord(xv, yv, renderer)
xs = self.format_xdata(p1[0])
ys = self.format_ydata(p1[1])
zs = self.format_zdata(p1[2])
if pane_idx == 0:
coords = f'x pane={xs}, y={ys}, z={zs}'
elif pane_idx == 1:
coords = f'x={xs}, y pane={ys}, z={zs}'
elif pane_idx == 2:
coords = f'x={xs}, y={ys}, z pane={zs}'
return coords
def _get_camera_loc(self):
"""
Returns the current camera location in data coordinates.
"""
cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()
c = np.array([cx, cy, cz])
r = np.array([dx, dy, dz])
if self._focal_length == np.inf: # orthographic projection
focal_length = 1e9 # large enough to be effectively infinite
else: # perspective projection
focal_length = self._focal_length
eye = c + self._view_w * self._dist * r / self._box_aspect * focal_length
return eye
def _calc_coord(self, xv, yv, renderer=None):
"""
Given the 2D view coordinates, find the point on the nearest axis pane
that lies directly below those coordinates. Returns a 3D point in data
coordinates.
"""
if self._focal_length == np.inf: # orthographic projection
zv = 1
else: # perspective projection
zv = -1 / self._focal_length
# Convert point on view plane to data coordinates
p1 = np.array(proj3d.inv_transform(xv, yv, zv, self.invM)).ravel()
# Get the vector from the camera to the point on the view plane
vec = self._get_camera_loc() - p1
# Get the pane locations for each of the axes
pane_locs = []
for axis in self._axis_map.values():
xys, loc = axis.active_pane(renderer)
pane_locs.append(loc)
# Find the distance to the nearest pane by projecting the view vector
scales = np.zeros(3)
for i in range(3):
if vec[i] == 0:
scales[i] = np.inf
else:
scales[i] = (p1[i] - pane_locs[i]) / vec[i]
pane_idx = np.argmin(abs(scales))
scale = scales[pane_idx]
# Calculate the point on the closest pane
p2 = p1 - scale*vec
return p2, pane_idx
def _on_move(self, event):
"""
Mouse moving.
By default, button-1 rotates, button-2 pans, and button-3 zooms;
these buttons can be modified via `mouse_init`.
"""
if not self.button_pressed:
return
if self.get_navigate_mode() is not None:
# we don't want to rotate if we are zooming/panning
# from the toolbar
return
if self.M is None:
return
x, y = event.xdata, event.ydata
# In case the mouse is out of bounds.
if x is None or event.inaxes != self:
return
dx, dy = x - self._sx, y - self._sy
w = self._pseudo_w
h = self._pseudo_h
# Rotation
if self.button_pressed in self._rotate_btn:
# rotate viewing point
# get the x and y pixel coords
if dx == 0 and dy == 0:
return
roll = np.deg2rad(self.roll)
delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll)
dazim = -(dy/h)*180*np.sin(roll) - (dx/w)*180*np.cos(roll)
elev = self.elev + delev
azim = self.azim + dazim
self.view_init(elev=elev, azim=azim, roll=roll, share=True)
self.stale = True
# Pan
elif self.button_pressed in self._pan_btn:
# Start the pan event with pixel coordinates
px, py = self.transData.transform([self._sx, self._sy])
self.start_pan(px, py, 2)
# pan view (takes pixel coordinate input)
self.drag_pan(2, None, event.x, event.y)
self.end_pan()
# Zoom
elif self.button_pressed in self._zoom_btn:
# zoom view (dragging down zooms in)
scale = h/(h - dy)
self._scale_axis_limits(scale, scale, scale)
# Store the event coordinates for the next time through.
self._sx, self._sy = x, y
# Always request a draw update at the end of interaction
self.figure.canvas.draw_idle()
def drag_pan(self, button, key, x, y):
# docstring inherited
# Get the coordinates from the move event
p = self._pan_start
(xdata, ydata), (xdata_start, ydata_start) = p.trans_inverse.transform(
[(x, y), (p.x, p.y)])
self._sx, self._sy = xdata, ydata
# Calling start_pan() to set the x/y of this event as the starting
# move location for the next event
self.start_pan(x, y, button)
du, dv = xdata - xdata_start, ydata - ydata_start
dw = 0
if key == 'x':
dv = 0
elif key == 'y':
du = 0
if du == 0 and dv == 0:
return
# Transform the pan from the view axes to the data axes
R = np.array([self._view_u, self._view_v, self._view_w])
R = -R / self._box_aspect * self._dist
duvw_projected = R.T @ np.array([du, dv, dw])
# Calculate pan distance
minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
dx = (maxx - minx) * duvw_projected[0]
dy = (maxy - miny) * duvw_projected[1]
dz = (maxz - minz) * duvw_projected[2]
# Set the new axis limits
self.set_xlim3d(minx + dx, maxx + dx)
self.set_ylim3d(miny + dy, maxy + dy)
self.set_zlim3d(minz + dz, maxz + dz)
def _calc_view_axes(self, eye):
"""
Get the unit vectors for the viewing axes in data coordinates.
`u` is towards the right of the screen
`v` is towards the top of the screen
`w` is out of the screen
"""
elev_rad = np.deg2rad(art3d._norm_angle(self.elev))
roll_rad = np.deg2rad(art3d._norm_angle(self.roll))
# Look into the middle of the world coordinates
R = 0.5 * self._roll_to_vertical(self._box_aspect)
# Define which axis should be vertical. A negative value
# indicates the plot is upside down and therefore the values
# have been reversed:
V = np.zeros(3)
V[self._vertical_axis] = -1 if abs(elev_rad) > np.pi/2 else 1
u, v, w = proj3d._view_axes(eye, R, V, roll_rad)
return u, v, w
def _set_view_from_bbox(self, bbox, direction='in',
mode=None, twinx=False, twiny=False):
"""
Zoom in or out of the bounding box.
Will center the view in the center of the bounding box, and zoom by
the ratio of the size of the bounding box to the size of the Axes3D.
"""
(start_x, start_y, stop_x, stop_y) = bbox
if mode == 'x':
start_y = self.bbox.min[1]
stop_y = self.bbox.max[1]
elif mode == 'y':
start_x = self.bbox.min[0]
stop_x = self.bbox.max[0]
# Clip to bounding box limits
start_x, stop_x = np.clip(sorted([start_x, stop_x]),
self.bbox.min[0], self.bbox.max[0])
start_y, stop_y = np.clip(sorted([start_y, stop_y]),
self.bbox.min[1], self.bbox.max[1])
# Move the center of the view to the center of the bbox
zoom_center_x = (start_x + stop_x)/2
zoom_center_y = (start_y + stop_y)/2
ax_center_x = (self.bbox.max[0] + self.bbox.min[0])/2
ax_center_y = (self.bbox.max[1] + self.bbox.min[1])/2
self.start_pan(zoom_center_x, zoom_center_y, 2)
self.drag_pan(2, None, ax_center_x, ax_center_y)
self.end_pan()
# Calculate zoom level
dx = abs(start_x - stop_x)
dy = abs(start_y - stop_y)
scale_u = dx / (self.bbox.max[0] - self.bbox.min[0])
scale_v = dy / (self.bbox.max[1] - self.bbox.min[1])
# Keep aspect ratios equal
scale = max(scale_u, scale_v)
# Zoom out
if direction == 'out':
scale = 1 / scale
self._zoom_data_limits(scale, scale, scale)
def _zoom_data_limits(self, scale_u, scale_v, scale_w):
"""
Zoom in or out of a 3D plot.
Will scale the data limits by the scale factors. These will be
transformed to the x, y, z data axes based on the current view angles.
A scale factor > 1 zooms out and a scale factor < 1 zooms in.
For an axes that has had its aspect ratio set to 'equal', 'equalxy',
'equalyz', or 'equalxz', the relevant axes are constrained to zoom
equally.
Parameters
----------
scale_u : float
Scale factor for the u view axis (view screen horizontal).
scale_v : float
Scale factor for the v view axis (view screen vertical).
scale_w : float
Scale factor for the w view axis (view screen depth).
"""
scale = np.array([scale_u, scale_v, scale_w])
# Only perform frame conversion if unequal scale factors
if not np.allclose(scale, scale_u):
# Convert the scale factors from the view frame to the data frame
R = np.array([self._view_u, self._view_v, self._view_w])
S = scale * np.eye(3)
scale = np.linalg.norm(R.T @ S, axis=1)
# Set the constrained scale factors to the factor closest to 1
if self._aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
ax_idxs = self._equal_aspect_axis_indices(self._aspect)
min_ax_idxs = np.argmin(np.abs(scale[ax_idxs] - 1))
scale[ax_idxs] = scale[ax_idxs][min_ax_idxs]
self._scale_axis_limits(scale[0], scale[1], scale[2])
def _scale_axis_limits(self, scale_x, scale_y, scale_z):
"""
Keeping the center of the x, y, and z data axes fixed, scale their
limits by scale factors. A scale factor > 1 zooms out and a scale
factor < 1 zooms in.
Parameters
----------
scale_x : float
Scale factor for the x data axis.
scale_y : float
Scale factor for the y data axis.
scale_z : float
Scale factor for the z data axis.
"""
# Get the axis centers and ranges
cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()
# Set the scaled axis limits
self.set_xlim3d(cx - dx*scale_x/2, cx + dx*scale_x/2)
self.set_ylim3d(cy - dy*scale_y/2, cy + dy*scale_y/2)
self.set_zlim3d(cz - dz*scale_z/2, cz + dz*scale_z/2)
def _get_w_centers_ranges(self):
"""Get 3D world centers and axis ranges."""
# Calculate center of axis limits
minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
cx = (maxx + minx)/2
cy = (maxy + miny)/2
cz = (maxz + minz)/2
# Calculate range of axis limits
dx = (maxx - minx)
dy = (maxy - miny)
dz = (maxz - minz)
return cx, cy, cz, dx, dy, dz
def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
"""
Set zlabel. See doc for `.set_ylabel` for description.
"""
if labelpad is not None:
self.zaxis.labelpad = labelpad
return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)
def get_zlabel(self):
"""
Get the z-label text string.
"""
label = self.zaxis.get_label()
return label.get_text()
# Axes rectangle characteristics
# The frame_on methods are not available for 3D axes.
# Python will raise a TypeError if they are called.
get_frame_on = None
set_frame_on = None
def grid(self, visible=True, **kwargs):
"""
Set / unset 3D grid.
.. note::
Currently, this function does not behave the same as
`.axes.Axes.grid`, but it is intended to eventually support that
behavior.
"""
# TODO: Operate on each axes separately
if len(kwargs):
visible = True
self._draw_grid = visible
self.stale = True
def tick_params(self, axis='both', **kwargs):
"""
Convenience method for changing the appearance of ticks and
tick labels.
See `.Axes.tick_params` for full documentation. Because this function
applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
to 'both' autoscales all three axes.
Also, because of how Axes3D objects are drawn very differently
from regular 2D axes, some of these settings may have
ambiguous meaning. For simplicity, the 'z' axis will
accept settings as if it was like the 'y' axis.
.. note::
Axes3D currently ignores some of these settings.
"""
_api.check_in_list(['x', 'y', 'z', 'both'], axis=axis)
if axis in ['x', 'y', 'both']:
super().tick_params(axis, **kwargs)
if axis in ['z', 'both']:
zkw = dict(kwargs)
zkw.pop('top', None)
zkw.pop('bottom', None)
zkw.pop('labeltop', None)
zkw.pop('labelbottom', None)
self.zaxis.set_tick_params(**zkw)
# data limits, ticks, tick labels, and formatting
def invert_zaxis(self):
"""
Invert the z-axis.
See Also
--------
zaxis_inverted
get_zlim, set_zlim
get_zbound, set_zbound
"""
bottom, top = self.get_zlim()
self.set_zlim(top, bottom, auto=None)
zaxis_inverted = _axis_method_wrapper("zaxis", "get_inverted")
def get_zbound(self):
"""
Return the lower and upper z-axis bounds, in increasing order.
See Also
--------
set_zbound
get_zlim, set_zlim
invert_zaxis, zaxis_inverted
"""
bottom, top = self.get_zlim()
if bottom < top:
return bottom, top
else:
return top, bottom
def set_zbound(self, lower=None, upper=None):
"""
Set the lower and upper numerical bounds of the z-axis.
This method will honor axes inversion regardless of parameter order.
It will not change the autoscaling setting (`.get_autoscalez_on()`).
Parameters
----------
lower, upper : float or None
The lower and upper bounds. If *None*, the respective axis bound
is not modified.
See Also
--------
get_zbound
get_zlim, set_zlim
invert_zaxis, zaxis_inverted
"""
if upper is None and np.iterable(lower):
lower, upper = lower
old_lower, old_upper = self.get_zbound()
if lower is None:
lower = old_lower
if upper is None:
upper = old_upper
self.set_zlim(sorted((lower, upper),
reverse=bool(self.zaxis_inverted())),
auto=None)
def text(self, x, y, z, s, zdir=None, **kwargs):
"""
Add the text *s* to the 3D Axes at location *x*, *y*, *z* in data coordinates.
Parameters
----------
x, y, z : float
The position to place the text.
s : str
The text.
zdir : {'x', 'y', 'z', 3-tuple}, optional
The direction to be used as the z-direction. Default: 'z'.
See `.get_dir_vector` for a description of the values.
**kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.text`.
Returns
-------
`.Text3D`
The created `.Text3D` instance.
"""
text = super().text(x, y, s, **kwargs)
art3d.text_2d_to_3d(text, z, zdir)
return text
text3D = text
text2D = Axes.text
def plot(self, xs, ys, *args, zdir='z', **kwargs):
"""
Plot 2D or 3D data.
Parameters
----------
xs : 1D array-like
x coordinates of vertices.
ys : 1D array-like
y coordinates of vertices.
zs : float or 1D array-like
z coordinates of vertices; either one for all points or one for
each point.
zdir : {'x', 'y', 'z'}, default: 'z'
When plotting 2D data, the direction to use as z.
**kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.plot`.
"""
had_data = self.has_data()
# `zs` can be passed positionally or as keyword; checking whether
# args[0] is a string matches the behavior of 2D `plot` (via
# `_process_plot_var_args`).
if args and not isinstance(args[0], str):
zs, *args = args
if 'zs' in kwargs:
raise TypeError("plot() for multiple values for argument 'z'")
else:
zs = kwargs.pop('zs', 0)
# Match length
zs = np.broadcast_to(zs, np.shape(xs))
lines = super().plot(xs, ys, *args, **kwargs)
for line in lines:
art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
self.auto_scale_xyz(xs, ys, zs, had_data)
return lines
plot3D = plot
def plot_surface(self, X, Y, Z, *, norm=None, vmin=None,
vmax=None, lightsource=None, **kwargs):
"""
Create a surface plot.
By default, it will be colored in shades of a solid color, but it also
supports colormapping by supplying the *cmap* argument.
.. note::
The *rcount* and *ccount* kwargs, which both default to 50,
determine the maximum number of samples used in each direction. If
the input data is larger, it will be downsampled (by slicing) to
these numbers of points.
.. note::
To maximize rendering speed consider setting *rstride* and *cstride*
to divisors of the number of rows minus 1 and columns minus 1
respectively. For example, given 51 rows rstride can be any of the
divisors of 50.
Similarly, a setting of *rstride* and *cstride* equal to 1 (or
*rcount* and *ccount* equal the number of rows and columns) can use
the optimized path.
Parameters
----------
X, Y, Z : 2D arrays
Data values.
rcount, ccount : int
Maximum number of samples used in each direction. If the input
data is larger, it will be downsampled (by slicing) to these
numbers of points. Defaults to 50.
rstride, cstride : int
Downsampling stride in each direction. These arguments are
mutually exclusive with *rcount* and *ccount*. If only one of
*rstride* or *cstride* is set, the other defaults to 10.
'classic' mode uses a default of ``rstride = cstride = 10`` instead
of the new default of ``rcount = ccount = 50``.
color : color-like
Color of the surface patches.
cmap : Colormap
Colormap of the surface patches.
facecolors : array-like of colors.
Colors of each individual patch.
norm : Normalize
Normalization for the colormap.
vmin, vmax : float
Bounds for the normalization.
shade : bool, default: True
Whether to shade the facecolors. Shading is always disabled when
*cmap* is specified.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
Other keyword arguments are forwarded to `.Poly3DCollection`.
"""
had_data = self.has_data()
if Z.ndim != 2:
raise ValueError("Argument Z must be 2-dimensional.")
Z = cbook._to_unmasked_float_array(Z)
X, Y, Z = np.broadcast_arrays(X, Y, Z)
rows, cols = Z.shape
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
has_count = 'rcount' in kwargs or 'ccount' in kwargs
if has_stride and has_count:
raise ValueError("Cannot specify both stride and count arguments")
rstride = kwargs.pop('rstride', 10)
cstride = kwargs.pop('cstride', 10)
rcount = kwargs.pop('rcount', 50)
ccount = kwargs.pop('ccount', 50)
if mpl.rcParams['_internal.classic_mode']:
# Strides have priority over counts in classic mode.
# So, only compute strides from counts
# if counts were explicitly given
compute_strides = has_count
else:
# If the strides are provided then it has priority.
# Otherwise, compute the strides from the counts.
compute_strides = not has_stride
if compute_strides:
rstride = int(max(np.ceil(rows / rcount), 1))
cstride = int(max(np.ceil(cols / ccount), 1))
fcolors = kwargs.pop('facecolors', None)
cmap = kwargs.get('cmap', None)
shade = kwargs.pop('shade', cmap is None)
if shade is None:
raise ValueError("shade cannot be None.")
colset = [] # the sampled facecolor
if (rows - 1) % rstride == 0 and \
(cols - 1) % cstride == 0 and \
fcolors is None:
polys = np.stack(
[cbook._array_patch_perimeters(a, rstride, cstride)
for a in (X, Y, Z)],
axis=-1)
else:
# evenly spaced, and including both endpoints
row_inds = list(range(0, rows-1, rstride)) + [rows-1]
col_inds = list(range(0, cols-1, cstride)) + [cols-1]
polys = []
for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
ps = [
# +1 ensures we share edges between polygons
cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1])
for a in (X, Y, Z)
]
# ps = np.stack(ps, axis=-1)
ps = np.array(ps).T
polys.append(ps)
if fcolors is not None:
colset.append(fcolors[rs][cs])
# In cases where there are non-finite values in the data (possibly NaNs from
# masked arrays), artifacts can be introduced. Here check whether such values
# are present and remove them.
if not isinstance(polys, np.ndarray) or not np.isfinite(polys).all():
new_polys = []
new_colset = []
# Depending on fcolors, colset is either an empty list or has as
# many elements as polys. In the former case new_colset results in
# a list with None entries, that is discarded later.
for p, col in itertools.zip_longest(polys, colset):
new_poly = np.array(p)[np.isfinite(p).all(axis=1)]
if len(new_poly):
new_polys.append(new_poly)
new_colset.append(col)
# Replace previous polys and, if fcolors is not None, colset
polys = new_polys
if fcolors is not None:
colset = new_colset
# note that the striding causes some polygons to have more coordinates
# than others
if fcolors is not None:
polyc = art3d.Poly3DCollection(
polys, edgecolors=colset, facecolors=colset, shade=shade,
lightsource=lightsource, **kwargs)
elif cmap:
polyc = art3d.Poly3DCollection(polys, **kwargs)
# can't always vectorize, because polys might be jagged
if isinstance(polys, np.ndarray):
avg_z = polys[..., 2].mean(axis=-1)
else:
avg_z = np.array([ps[:, 2].mean() for ps in polys])
polyc.set_array(avg_z)
if vmin is not None or vmax is not None:
polyc.set_clim(vmin, vmax)
if norm is not None:
polyc.set_norm(norm)
else:
color = kwargs.pop('color', None)
if color is None:
color = self._get_lines.get_next_color()
color = np.array(mcolors.to_rgba(color))
polyc = art3d.Poly3DCollection(
polys, facecolors=color, shade=shade,
lightsource=lightsource, **kwargs)
self.add_collection(polyc)
self.auto_scale_xyz(X, Y, Z, had_data)
return polyc
def plot_wireframe(self, X, Y, Z, **kwargs):
"""
Plot a 3D wireframe.
.. note::
The *rcount* and *ccount* kwargs, which both default to 50,
determine the maximum number of samples used in each direction. If
the input data is larger, it will be downsampled (by slicing) to
these numbers of points.
Parameters
----------
X, Y, Z : 2D arrays
Data values.
rcount, ccount : int
Maximum number of samples used in each direction. If the input
data is larger, it will be downsampled (by slicing) to these
numbers of points. Setting a count to zero causes the data to be
not sampled in the corresponding direction, producing a 3D line
plot rather than a wireframe plot. Defaults to 50.
rstride, cstride : int
Downsampling stride in each direction. These arguments are
mutually exclusive with *rcount* and *ccount*. If only one of
*rstride* or *cstride* is set, the other defaults to 1. Setting a
stride to zero causes the data to be not sampled in the
corresponding direction, producing a 3D line plot rather than a
wireframe plot.
'classic' mode uses a default of ``rstride = cstride = 1`` instead
of the new default of ``rcount = ccount = 50``.
**kwargs
Other keyword arguments are forwarded to `.Line3DCollection`.
"""
had_data = self.has_data()
if Z.ndim != 2:
raise ValueError("Argument Z must be 2-dimensional.")
# FIXME: Support masked arrays
X, Y, Z = np.broadcast_arrays(X, Y, Z)
rows, cols = Z.shape
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
has_count = 'rcount' in kwargs or 'ccount' in kwargs
if has_stride and has_count:
raise ValueError("Cannot specify both stride and count arguments")
rstride = kwargs.pop('rstride', 1)
cstride = kwargs.pop('cstride', 1)
rcount = kwargs.pop('rcount', 50)
ccount = kwargs.pop('ccount', 50)
if mpl.rcParams['_internal.classic_mode']:
# Strides have priority over counts in classic mode.
# So, only compute strides from counts
# if counts were explicitly given
if has_count:
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
else:
# If the strides are provided then it has priority.
# Otherwise, compute the strides from the counts.
if not has_stride:
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
# We want two sets of lines, one running along the "rows" of
# Z and another set of lines running along the "columns" of Z.
# This transpose will make it easy to obtain the columns.
tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)
if rstride:
rii = list(range(0, rows, rstride))
# Add the last index only if needed
if rows > 0 and rii[-1] != (rows - 1):
rii += [rows-1]
else:
rii = []
if cstride:
cii = list(range(0, cols, cstride))
# Add the last index only if needed
if cols > 0 and cii[-1] != (cols - 1):
cii += [cols-1]
else:
cii = []
if rstride == 0 and cstride == 0:
raise ValueError("Either rstride or cstride must be non zero")
# If the inputs were empty, then just
# reset everything.
if Z.size == 0:
rii = []
cii = []
xlines = [X[i] for i in rii]
ylines = [Y[i] for i in rii]
zlines = [Z[i] for i in rii]
txlines = [tX[i] for i in cii]
tylines = [tY[i] for i in cii]
tzlines = [tZ[i] for i in cii]
lines = ([list(zip(xl, yl, zl))
for xl, yl, zl in zip(xlines, ylines, zlines)]
+ [list(zip(xl, yl, zl))
for xl, yl, zl in zip(txlines, tylines, tzlines)])
linec = art3d.Line3DCollection(lines, **kwargs)
self.add_collection(linec)
self.auto_scale_xyz(X, Y, Z, had_data)
return linec
def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None,
lightsource=None, **kwargs):
"""
Plot a triangulated surface.
The (optional) triangulation can be specified in one of two ways;
either::
plot_trisurf(triangulation, ...)
where triangulation is a `~matplotlib.tri.Triangulation` object, or::
plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)
in which case a Triangulation object will be created. See
`.Triangulation` for an explanation of these possibilities.
The remaining arguments are::
plot_trisurf(..., Z)
where *Z* is the array of values to contour, one per point
in the triangulation.
Parameters
----------
X, Y, Z : array-like
Data values as 1D arrays.
color
Color of the surface patches.
cmap
A colormap for the surface patches.
norm : Normalize
An instance of Normalize to map values to colors.
vmin, vmax : float, default: None
Minimum and maximum value to map.
shade : bool, default: True
Whether to shade the facecolors. Shading is always disabled when
*cmap* is specified.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
All other keyword arguments are passed on to
:class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
Examples
--------
.. plot:: gallery/mplot3d/trisurf3d.py
.. plot:: gallery/mplot3d/trisurf3d_2.py
"""
had_data = self.has_data()
# TODO: Support custom face colours
if color is None:
color = self._get_lines.get_next_color()
color = np.array(mcolors.to_rgba(color))
cmap = kwargs.get('cmap', None)
shade = kwargs.pop('shade', cmap is None)
tri, args, kwargs = \
Triangulation.get_from_args_and_kwargs(*args, **kwargs)
try:
z = kwargs.pop('Z')
except KeyError:
# We do this so Z doesn't get passed as an arg to PolyCollection
z, *args = args
z = np.asarray(z)
triangles = tri.get_masked_triangles()
xt = tri.x[triangles]
yt = tri.y[triangles]
zt = z[triangles]
verts = np.stack((xt, yt, zt), axis=-1)
if cmap:
polyc = art3d.Poly3DCollection(verts, *args, **kwargs)
# average over the three points of each triangle
avg_z = verts[:, :, 2].mean(axis=1)
polyc.set_array(avg_z)
if vmin is not None or vmax is not None:
polyc.set_clim(vmin, vmax)
if norm is not None:
polyc.set_norm(norm)
else:
polyc = art3d.Poly3DCollection(
verts, *args, shade=shade, lightsource=lightsource,
facecolors=color, **kwargs)
self.add_collection(polyc)
self.auto_scale_xyz(tri.x, tri.y, z, had_data)
return polyc
def _3d_extend_contour(self, cset, stride=5):
"""
Extend a contour in 3D by creating
"""
dz = (cset.levels[1] - cset.levels[0]) / 2
polyverts = []
colors = []
for idx, level in enumerate(cset.levels):
path = cset.get_paths()[idx]
subpaths = [*path._iter_connected_components()]
color = cset.get_edgecolor()[idx]
top = art3d._paths_to_3d_segments(subpaths, level - dz)
bot = art3d._paths_to_3d_segments(subpaths, level + dz)
if not len(top[0]):
continue
nsteps = max(round(len(top[0]) / stride), 2)
stepsize = (len(top[0]) - 1) / (nsteps - 1)
polyverts.extend([
(top[0][round(i * stepsize)], top[0][round((i + 1) * stepsize)],
bot[0][round((i + 1) * stepsize)], bot[0][round(i * stepsize)])
for i in range(round(nsteps) - 1)])
colors.extend([color] * (round(nsteps) - 1))
self.add_collection3d(art3d.Poly3DCollection(
np.array(polyverts), # All polygons have 4 vertices, so vectorize.
facecolors=colors, edgecolors=colors, shade=True))
cset.remove()
def add_contour_set(
self, cset, extend3d=False, stride=5, zdir='z', offset=None):
zdir = '-' + zdir
if extend3d:
self._3d_extend_contour(cset, stride)
else:
art3d.collection_2d_to_3d(
cset, zs=offset if offset is not None else cset.levels, zdir=zdir)
def add_contourf_set(self, cset, zdir='z', offset=None):
self._add_contourf_set(cset, zdir=zdir, offset=offset)
def _add_contourf_set(self, cset, zdir='z', offset=None):
"""
Returns
-------
levels : `numpy.ndarray`
Levels at which the filled contours are added.
"""
zdir = '-' + zdir
midpoints = cset.levels[:-1] + np.diff(cset.levels) / 2
# Linearly interpolate to get levels for any extensions
if cset._extend_min:
min_level = cset.levels[0] - np.diff(cset.levels[:2]) / 2
midpoints = np.insert(midpoints, 0, min_level)
if cset._extend_max:
max_level = cset.levels[-1] + np.diff(cset.levels[-2:]) / 2
midpoints = np.append(midpoints, max_level)
art3d.collection_2d_to_3d(
cset, zs=offset if offset is not None else midpoints, zdir=zdir)
return midpoints
@_preprocess_data()
def contour(self, X, Y, Z, *args,
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
"""
Create a 3D contour plot.
Parameters
----------
X, Y, Z : array-like,
Input data. See `.Axes.contour` for supported data shapes.
extend3d : bool, default: False
Whether to extend contour in 3D.
stride : int
Step size for extending contour.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.contour`.
Returns
-------
matplotlib.contour.QuadContourSet
"""
had_data = self.has_data()
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
cset = super().contour(jX, jY, jZ, *args, **kwargs)
self.add_contour_set(cset, extend3d, stride, zdir, offset)
self.auto_scale_xyz(X, Y, Z, had_data)
return cset
contour3D = contour
@_preprocess_data()
def tricontour(self, *args,
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
"""
Create a 3D contour plot.
.. note::
This method currently produces incorrect output due to a
longstanding bug in 3D PolyCollection rendering.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.tricontour` for supported data shapes.
extend3d : bool, default: False
Whether to extend contour in 3D.
stride : int
Step size for extending contour.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`.
Returns
-------
matplotlib.tri._tricontour.TriContourSet
"""
had_data = self.has_data()
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
*args, **kwargs)
X = tri.x
Y = tri.y
if 'Z' in kwargs:
Z = kwargs.pop('Z')
else:
# We do this so Z doesn't get passed as an arg to Axes.tricontour
Z, *args = args
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
cset = super().tricontour(tri, jZ, *args, **kwargs)
self.add_contour_set(cset, extend3d, stride, zdir, offset)
self.auto_scale_xyz(X, Y, Z, had_data)
return cset
def _auto_scale_contourf(self, X, Y, Z, zdir, levels, had_data):
# Autoscale in the zdir based on the levels added, which are
# different from data range if any contour extensions are present
dim_vals = {'x': X, 'y': Y, 'z': Z, zdir: levels}
# Input data and levels have different sizes, but auto_scale_xyz
# expected same-size input, so manually take min/max limits
limits = [(np.nanmin(dim_vals[dim]), np.nanmax(dim_vals[dim]))
for dim in ['x', 'y', 'z']]
self.auto_scale_xyz(*limits, had_data)
@_preprocess_data()
def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs):
"""
Create a 3D filled contour plot.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.contourf` for supported data shapes.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.contourf`.
Returns
-------
matplotlib.contour.QuadContourSet
"""
had_data = self.has_data()
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
cset = super().contourf(jX, jY, jZ, *args, **kwargs)
levels = self._add_contourf_set(cset, zdir, offset)
self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
return cset
contourf3D = contourf
@_preprocess_data()
def tricontourf(self, *args, zdir='z', offset=None, **kwargs):
"""
Create a 3D filled contour plot.
.. note::
This method currently produces incorrect output due to a
longstanding bug in 3D PolyCollection rendering.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.tricontourf` for supported data shapes.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to zdir.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to
`matplotlib.axes.Axes.tricontourf`.
Returns
-------
matplotlib.tri._tricontour.TriContourSet
"""
had_data = self.has_data()
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
*args, **kwargs)
X = tri.x
Y = tri.y
if 'Z' in kwargs:
Z = kwargs.pop('Z')
else:
# We do this so Z doesn't get passed as an arg to Axes.tricontourf
Z, *args = args
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
cset = super().tricontourf(tri, jZ, *args, **kwargs)
levels = self._add_contourf_set(cset, zdir, offset)
self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
return cset
def add_collection3d(self, col, zs=0, zdir='z'):
"""
Add a 3D collection object to the plot.
2D collection types are converted to a 3D version by
modifying the object and adding z coordinate information.
Supported are:
- PolyCollection
- LineCollection
- PatchCollection
"""
zvals = np.atleast_1d(zs)
zsortval = (np.min(zvals) if zvals.size
else 0) # FIXME: arbitrary default
# FIXME: use issubclass() (although, then a 3D collection
# object would also pass.) Maybe have a collection3d
# abstract class to test for and exclude?
if type(col) is mcoll.PolyCollection:
art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
elif type(col) is mcoll.LineCollection:
art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
elif type(col) is mcoll.PatchCollection:
art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
collection = super().add_collection(col)
return collection
@_preprocess_data(replace_names=["xs", "ys", "zs", "s",
"edgecolors", "c", "facecolor",
"facecolors", "color"])
def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
*args, **kwargs):
"""
Create a scatter plot.
Parameters
----------
xs, ys : array-like
The data positions.
zs : float or array-like, default: 0
The z-positions. Either an array of the same length as *xs* and
*ys* or a single value to place all points in the same plane.
zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'
The axis direction for the *zs*. This is useful when plotting 2D
data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting
*zdir* to 'y' then plots the data to the x-z-plane.
See also :doc:`/gallery/mplot3d/2dcollections3d`.
s : float or array-like, default: 20
The marker size in points**2. Either an array of the same length
as *xs* and *ys* or a single value to make all markers the same
size.
c : color, sequence, or sequence of colors, optional
The marker color. Possible values:
- A single color format string.
- A sequence of colors of length n.
- A sequence of n numbers to be mapped to colors using *cmap* and
*norm*.
- A 2D array in which the rows are RGB or RGBA.
For more details see the *c* argument of `~.axes.Axes.scatter`.
depthshade : bool, default: True
Whether to shade the scatter markers to give the appearance of
depth. Each call to ``scatter()`` will perform its depthshading
independently.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
All other keyword arguments are passed on to `~.axes.Axes.scatter`.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
"""
had_data = self.has_data()
zs_orig = zs
xs, ys, zs = np.broadcast_arrays(
*[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
s = np.ma.ravel(s) # This doesn't have to match x, y in size.
xs, ys, zs, s, c, color = cbook.delete_masked_points(
xs, ys, zs, s, c, kwargs.get('color', None)
)
if kwargs.get("color") is not None:
kwargs['color'] = color
# For xs and ys, 2D scatter() will do the copying.
if np.may_share_memory(zs_orig, zs): # Avoid unnecessary copies.
zs = zs.copy()
patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs)
art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
depthshade=depthshade)
if self._zmargin < 0.05 and xs.size > 0:
self.set_zmargin(0.05)
self.auto_scale_xyz(xs, ys, zs, had_data)
return patches
scatter3D = scatter
@_preprocess_data()
def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
"""
Add 2D bar(s).
Parameters
----------
left : 1D array-like
The x coordinates of the left sides of the bars.
height : 1D array-like
The height of the bars.
zs : float or 1D array-like
Z coordinate of bars; if a single value is specified, it will be
used for all bars.
zdir : {'x', 'y', 'z'}, default: 'z'
When plotting 2D data, the direction to use as z ('x', 'y' or 'z').
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Other keyword arguments are forwarded to
`matplotlib.axes.Axes.bar`.
Returns
-------
mpl_toolkits.mplot3d.art3d.Patch3DCollection
"""
had_data = self.has_data()
patches = super().bar(left, height, *args, **kwargs)
zs = np.broadcast_to(zs, len(left))
verts = []
verts_zs = []
for p, z in zip(patches, zs):
vs = art3d._get_patch_verts(p)
verts += vs.tolist()
verts_zs += [z] * len(vs)
art3d.patch_2d_to_3d(p, z, zdir)
if 'alpha' in kwargs:
p.set_alpha(kwargs['alpha'])
if len(verts) > 0:
# the following has to be skipped if verts is empty
# NOTE: Bugs could still occur if len(verts) > 0,
# but the "2nd dimension" is empty.
xs, ys = zip(*verts)
else:
xs, ys = [], []
xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
self.auto_scale_xyz(xs, ys, verts_zs, had_data)
return patches
@_preprocess_data()
def bar3d(self, x, y, z, dx, dy, dz, color=None,
zsort='average', shade=True, lightsource=None, *args, **kwargs):
"""
Generate a 3D barplot.
This method creates three-dimensional barplot where the width,
depth, height, and color of the bars can all be uniquely set.
Parameters
----------
x, y, z : array-like
The coordinates of the anchor point of the bars.
dx, dy, dz : float or array-like
The width, depth, and height of the bars, respectively.
color : sequence of colors, optional
The color of the bars can be specified globally or
individually. This parameter can be:
- A single color, to color all bars the same color.
- An array of colors of length N bars, to color each bar
independently.
- An array of colors of length 6, to color the faces of the
bars similarly.
- An array of colors of length 6 * N bars, to color each face
independently.
When coloring the faces of the boxes specifically, this is
the order of the coloring:
1. -Z (bottom of box)
2. +Z (top of box)
3. -Y
4. +Y
5. -X
6. +X
zsort : str, optional
The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection`
shade : bool, default: True
When true, this shades the dark sides of the bars (relative
to the plot's source of light).
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Any additional keyword arguments are passed onto
`~.art3d.Poly3DCollection`.
Returns
-------
collection : `~.art3d.Poly3DCollection`
A collection of three-dimensional polygons representing the bars.
"""
had_data = self.has_data()
x, y, z, dx, dy, dz = np.broadcast_arrays(
np.atleast_1d(x), y, z, dx, dy, dz)
minx = np.min(x)
maxx = np.max(x + dx)
miny = np.min(y)
maxy = np.max(y + dy)
minz = np.min(z)
maxz = np.max(z + dz)
# shape (6, 4, 3)
# All faces are oriented facing outwards - when viewed from the
# outside, their vertices are in a counterclockwise ordering.
cuboid = np.array([
# -z
(
(0, 0, 0),
(0, 1, 0),
(1, 1, 0),
(1, 0, 0),
),
# +z
(
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
),
# -y
(
(0, 0, 0),
(1, 0, 0),
(1, 0, 1),
(0, 0, 1),
),
# +y
(
(0, 1, 0),
(0, 1, 1),
(1, 1, 1),
(1, 1, 0),
),
# -x
(
(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(0, 1, 0),
),
# +x
(
(1, 0, 0),
(1, 1, 0),
(1, 1, 1),
(1, 0, 1),
),
])
# indexed by [bar, face, vertex, coord]
polys = np.empty(x.shape + cuboid.shape)
# handle each coordinate separately
for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]:
p = p[..., np.newaxis, np.newaxis]
dp = dp[..., np.newaxis, np.newaxis]
polys[..., i] = p + dp * cuboid[..., i]
# collapse the first two axes
polys = polys.reshape((-1,) + polys.shape[2:])
facecolors = []
if color is None:
color = [self._get_patches_for_fill.get_next_color()]
color = list(mcolors.to_rgba_array(color))
if len(color) == len(x):
# bar colors specified, need to expand to number of faces
for c in color:
facecolors.extend([c] * 6)
else:
# a single color specified, or face colors specified explicitly
facecolors = color
if len(facecolors) < len(x):
facecolors *= (6 * len(x))
col = art3d.Poly3DCollection(polys,
zsort=zsort,
facecolors=facecolors,
shade=shade,
lightsource=lightsource,
*args, **kwargs)
self.add_collection(col)
self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
return col
def set_title(self, label, fontdict=None, loc='center', **kwargs):
# docstring inherited
ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs)
(x, y) = self.title.get_position()
self.title.set_y(0.92 * y)
return ret
@_preprocess_data()
def quiver(self, X, Y, Z, U, V, W, *,
length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
**kwargs):
"""
Plot a 3D field of arrows.
The arguments can be array-like or scalars, so long as they can be
broadcast together. The arguments can also be masked arrays. If an
element in any of argument is masked, then that corresponding quiver
element will not be plotted.
Parameters
----------
X, Y, Z : array-like
The x, y and z coordinates of the arrow locations (default is
tail of arrow; see *pivot* kwarg).
U, V, W : array-like
The x, y and z components of the arrow vectors.
length : float, default: 1
The length of each quiver.
arrow_length_ratio : float, default: 0.3
The ratio of the arrow head with respect to the quiver.
pivot : {'tail', 'middle', 'tip'}, default: 'tail'
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
normalize : bool, default: False
Whether all arrows are normalized to have the same length, or keep
the lengths defined by *u*, *v*, and *w*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Any additional keyword arguments are delegated to
:class:`.Line3DCollection`
"""
def calc_arrows(UVW):
# get unit direction vector perpendicular to (u, v, w)
x = UVW[:, 0]
y = UVW[:, 1]
norm = np.linalg.norm(UVW[:, :2], axis=1)
x_p = np.divide(y, norm, where=norm != 0, out=np.zeros_like(x))
y_p = np.divide(-x, norm, where=norm != 0, out=np.ones_like(x))
# compute the two arrowhead direction unit vectors
rangle = math.radians(15)
c = math.cos(rangle)
s = math.sin(rangle)
# construct the rotation matrices of shape (3, 3, n)
r13 = y_p * s
r32 = x_p * s
r12 = x_p * y_p * (1 - c)
Rpos = np.array(
[[c + (x_p ** 2) * (1 - c), r12, r13],
[r12, c + (y_p ** 2) * (1 - c), -r32],
[-r13, r32, np.full_like(x_p, c)]])
# opposite rotation negates all the sin terms
Rneg = Rpos.copy()
Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] *= -1
# Batch n (3, 3) x (3) matrix multiplications ((3, 3, n) x (n, 3)).
Rpos_vecs = np.einsum("ij...,...j->...i", Rpos, UVW)
Rneg_vecs = np.einsum("ij...,...j->...i", Rneg, UVW)
# Stack into (n, 2, 3) result.
return np.stack([Rpos_vecs, Rneg_vecs], axis=1)
had_data = self.has_data()
input_args = [X, Y, Z, U, V, W]
# extract the masks, if any
masks = [k.mask for k in input_args
if isinstance(k, np.ma.MaskedArray)]
# broadcast to match the shape
bcast = np.broadcast_arrays(*input_args, *masks)
input_args = bcast[:6]
masks = bcast[6:]
if masks:
# combine the masks into one
mask = functools.reduce(np.logical_or, masks)
# put mask on and compress
input_args = [np.ma.array(k, mask=mask).compressed()
for k in input_args]
else:
input_args = [np.ravel(k) for k in input_args]
if any(len(v) == 0 for v in input_args):
# No quivers, so just make an empty collection and return early
linec = art3d.Line3DCollection([], **kwargs)
self.add_collection(linec)
return linec
shaft_dt = np.array([0., length], dtype=float)
arrow_dt = shaft_dt * arrow_length_ratio
_api.check_in_list(['tail', 'middle', 'tip'], pivot=pivot)
if pivot == 'tail':
shaft_dt -= length
elif pivot == 'middle':
shaft_dt -= length / 2
XYZ = np.column_stack(input_args[:3])
UVW = np.column_stack(input_args[3:]).astype(float)
# Normalize rows of UVW
norm = np.linalg.norm(UVW, axis=1)
# If any row of UVW is all zeros, don't make a quiver for it
mask = norm > 0
XYZ = XYZ[mask]
if normalize:
UVW = UVW[mask] / norm[mask].reshape((-1, 1))
else:
UVW = UVW[mask]
if len(XYZ) > 0:
# compute the shaft lines all at once with an outer product
shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
# compute head direction vectors, n heads x 2 sides x 3 dimensions
head_dirs = calc_arrows(UVW)
# compute all head lines at once, starting from the shaft ends
heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
# stack left and right head lines together
heads = heads.reshape((len(arrow_dt), -1, 3))
# transpose to get a list of lines
heads = heads.swapaxes(0, 1)
lines = [*shafts, *heads]
else:
lines = []
linec = art3d.Line3DCollection(lines, **kwargs)
self.add_collection(linec)
self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)
return linec
quiver3D = quiver
def voxels(self, *args, facecolors=None, edgecolors=None, shade=True,
lightsource=None, **kwargs):
"""
ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \
**kwargs)
Plot a set of filled voxels
All voxels are plotted as 1x1x1 cubes on the axis, with
``filled[0, 0, 0]`` placed with its lower corner at the origin.
Occluded faces are not plotted.
Parameters
----------
filled : 3D np.array of bool
A 3D array of values, with truthy values indicating which voxels
to fill
x, y, z : 3D np.array, optional
The coordinates of the corners of the voxels. This should broadcast
to a shape one larger in every dimension than the shape of
*filled*. These can be used to plot non-cubic voxels.
If not specified, defaults to increasing integers along each axis,
like those returned by :func:`~numpy.indices`.
As indicated by the ``/`` in the function signature, these
arguments can only be passed positionally.
facecolors, edgecolors : array-like, optional
The color to draw the faces and edges of the voxels. Can only be
passed as keyword arguments.
These parameters can be:
- A single color value, to color all voxels the same color. This
can be either a string, or a 1D RGB/RGBA array
- ``None``, the default, to use a single color for the faces, and
the style default for the edges.
- A 3D `~numpy.ndarray` of color names, with each item the color
for the corresponding voxel. The size must match the voxels.
- A 4D `~numpy.ndarray` of RGB/RGBA data, with the components
along the last axis.
shade : bool, default: True
Whether to shade the facecolors.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
Additional keyword arguments to pass onto
`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`.
Returns
-------
faces : dict
A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a
`.Poly3DCollection` of the faces drawn for the voxel
``filled[i, j, k]``. If no faces were drawn for a given voxel,
either because it was not asked to be drawn, or it is fully
occluded, then ``(i, j, k) not in faces``.
Examples
--------
.. plot:: gallery/mplot3d/voxels.py
.. plot:: gallery/mplot3d/voxels_rgb.py
.. plot:: gallery/mplot3d/voxels_torus.py
.. plot:: gallery/mplot3d/voxels_numpy_logo.py
"""
# work out which signature we should be using, and use it to parse
# the arguments. Name must be voxels for the correct error message
if len(args) >= 3:
# underscores indicate position only
def voxels(__x, __y, __z, filled, **kwargs):
return (__x, __y, __z), filled, kwargs
else:
def voxels(filled, **kwargs):
return None, filled, kwargs
xyz, filled, kwargs = voxels(*args, **kwargs)
# check dimensions
if filled.ndim != 3:
raise ValueError("Argument filled must be 3-dimensional")
size = np.array(filled.shape, dtype=np.intp)
# check xyz coordinates, which are one larger than the filled shape
coord_shape = tuple(size + 1)
if xyz is None:
x, y, z = np.indices(coord_shape)
else:
x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz)
def _broadcast_color_arg(color, name):
if np.ndim(color) in (0, 1):
# single color, like "red" or [1, 0, 0]
return np.broadcast_to(color, filled.shape + np.shape(color))
elif np.ndim(color) in (3, 4):
# 3D array of strings, or 4D array with last axis rgb
if np.shape(color)[:3] != filled.shape:
raise ValueError(
f"When multidimensional, {name} must match the shape "
"of filled")
return color
else:
raise ValueError(f"Invalid {name} argument")
# broadcast and default on facecolors
if facecolors is None:
facecolors = self._get_patches_for_fill.get_next_color()
facecolors = _broadcast_color_arg(facecolors, 'facecolors')
# broadcast but no default on edgecolors
edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')
# scale to the full array, even if the data is only in the center
self.auto_scale_xyz(x, y, z)
# points lying on corners of a square
square = np.array([
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
], dtype=np.intp)
voxel_faces = defaultdict(list)
def permutation_matrices(n):
"""Generate cyclic permutation matrices."""
mat = np.eye(n, dtype=np.intp)
for i in range(n):
yield mat
mat = np.roll(mat, 1, axis=0)
# iterate over each of the YZ, ZX, and XY orientations, finding faces
# to render
for permute in permutation_matrices(3):
# find the set of ranges to iterate over
pc, qc, rc = permute.T.dot(size)
pinds = np.arange(pc)
qinds = np.arange(qc)
rinds = np.arange(rc)
square_rot_pos = square.dot(permute.T)
square_rot_neg = square_rot_pos[::-1]
# iterate within the current plane
for p in pinds:
for q in qinds:
# iterate perpendicularly to the current plane, handling
# boundaries. We only draw faces between a voxel and an
# empty space, to avoid drawing internal faces.
# draw lower faces
p0 = permute.dot([p, q, 0])
i0 = tuple(p0)
if filled[i0]:
voxel_faces[i0].append(p0 + square_rot_neg)
# draw middle faces
for r1, r2 in zip(rinds[:-1], rinds[1:]):
p1 = permute.dot([p, q, r1])
p2 = permute.dot([p, q, r2])
i1 = tuple(p1)
i2 = tuple(p2)
if filled[i1] and not filled[i2]:
voxel_faces[i1].append(p2 + square_rot_pos)
elif not filled[i1] and filled[i2]:
voxel_faces[i2].append(p2 + square_rot_neg)
# draw upper faces
pk = permute.dot([p, q, rc-1])
pk2 = permute.dot([p, q, rc])
ik = tuple(pk)
if filled[ik]:
voxel_faces[ik].append(pk2 + square_rot_pos)
# iterate over the faces, and generate a Poly3DCollection for each
# voxel
polygons = {}
for coord, faces_inds in voxel_faces.items():
# convert indices into 3D positions
if xyz is None:
faces = faces_inds
else:
faces = []
for face_inds in faces_inds:
ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
face = np.empty(face_inds.shape)
face[:, 0] = x[ind]
face[:, 1] = y[ind]
face[:, 2] = z[ind]
faces.append(face)
# shade the faces
facecolor = facecolors[coord]
edgecolor = edgecolors[coord]
poly = art3d.Poly3DCollection(
faces, facecolors=facecolor, edgecolors=edgecolor,
shade=shade, lightsource=lightsource, **kwargs)
self.add_collection3d(poly)
polygons[coord] = poly
return polygons
@_preprocess_data(replace_names=["x", "y", "z", "xerr", "yerr", "zerr"])
def errorbar(self, x, y, z, zerr=None, yerr=None, xerr=None, fmt='',
barsabove=False, errorevery=1, ecolor=None, elinewidth=None,
capsize=None, capthick=None, xlolims=False, xuplims=False,
ylolims=False, yuplims=False, zlolims=False, zuplims=False,
**kwargs):
"""
Plot lines and/or markers with errorbars around them.
*x*/*y*/*z* define the data locations, and *xerr*/*yerr*/*zerr* define
the errorbar sizes. By default, this draws the data markers/lines as
well the errorbars. Use fmt='none' to draw errorbars only.
Parameters
----------
x, y, z : float or array-like
The data positions.
xerr, yerr, zerr : float or array-like, shape (N,) or (2, N), optional
The errorbar sizes:
- scalar: Symmetric +/- values for all data points.
- shape(N,): Symmetric +/-values for each data point.
- shape(2, N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the upper
errors.
- *None*: No errorbar.
Note that all error arrays should have *positive* values.
fmt : str, default: ''
The format for the data points / data lines. See `.plot` for
details.
Use 'none' (case-insensitive) to plot errorbars without any data
markers.
ecolor : color, default: None
The color of the errorbar lines. If None, use the color of the
line connecting the markers.
elinewidth : float, default: None
The linewidth of the errorbar lines. If None, the linewidth of
the current style is used.
capsize : float, default: :rc:`errorbar.capsize`
The length of the error bar caps in points.
capthick : float, default: None
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
This setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.
barsabove : bool, default: False
If True, will plot the errorbars above the plot
symbols. Default is below.
xlolims, ylolims, zlolims : bool, default: False
These arguments can be used to indicate that a value gives only
lower limits. In that case a caret symbol is used to indicate
this. *lims*-arguments may be scalars, or array-likes of the same
length as the errors. To use limits with inverted axes,
`~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
`errorbar`. Note the tricky parameter names: setting e.g.
*ylolims* to True means that the y-value is a *lower* limit of the
True value, so, only an *upward*-pointing arrow will be drawn!
xuplims, yuplims, zuplims : bool, default: False
Same as above, but for controlling the upper limits.
errorevery : int or (int, int), default: 1
draws error bars on a subset of the data. *errorevery* =N draws
error bars on the points (x[::N], y[::N], z[::N]).
*errorevery* =(start, N) draws error bars on the points
(x[start::N], y[start::N], z[start::N]). e.g. *errorevery* =(6, 3)
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
Used to avoid overlapping error bars when two series share x-axis
values.
Returns
-------
errlines : list
List of `~mpl_toolkits.mplot3d.art3d.Line3DCollection` instances
each containing an errorbar line.
caplines : list
List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
containing a capline object.
limmarks : list
List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
containing a marker with an upper or lower limit.
Other Parameters
----------------
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
All other keyword arguments for styling errorbar lines are passed
`~mpl_toolkits.mplot3d.art3d.Line3DCollection`.
Examples
--------
.. plot:: gallery/mplot3d/errorbar3d.py
"""
had_data = self.has_data()
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
# Drop anything that comes in as None to use the default instead.
kwargs = {k: v for k, v in kwargs.items() if v is not None}
kwargs.setdefault('zorder', 2)
self._process_unit_info([("x", x), ("y", y), ("z", z)], kwargs,
convert=False)
# make sure all the args are iterable; use lists not arrays to
# preserve units
x = x if np.iterable(x) else [x]
y = y if np.iterable(y) else [y]
z = z if np.iterable(z) else [z]
if not len(x) == len(y) == len(z):
raise ValueError("'x', 'y', and 'z' must have the same size")
everymask = self._errorevery_to_mask(x, errorevery)
label = kwargs.pop("label", None)
kwargs['label'] = '_nolegend_'
# Create the main line and determine overall kwargs for child artists.
# We avoid calling self.plot() directly, or self._get_lines(), because
# that would call self._process_unit_info again, and do other indirect
# data processing.
(data_line, base_style), = self._get_lines._plot_args(
self, (x, y) if fmt == '' else (x, y, fmt), kwargs, return_kwargs=True)
art3d.line_2d_to_3d(data_line, zs=z)
# Do this after creating `data_line` to avoid modifying `base_style`.
if barsabove:
data_line.set_zorder(kwargs['zorder'] - .1)
else:
data_line.set_zorder(kwargs['zorder'] + .1)
# Add line to plot, or throw it away and use it to determine kwargs.
if fmt.lower() != 'none':
self.add_line(data_line)
else:
data_line = None
# Remove alpha=0 color that _process_plot_format returns.
base_style.pop('color')
if 'color' not in base_style:
base_style['color'] = 'C0'
if ecolor is None:
ecolor = base_style['color']
# Eject any line-specific information from format string, as it's not
# needed for bars or caps.
for key in ['marker', 'markersize', 'markerfacecolor',
'markeredgewidth', 'markeredgecolor', 'markevery',
'linestyle', 'fillstyle', 'drawstyle', 'dash_capstyle',
'dash_joinstyle', 'solid_capstyle', 'solid_joinstyle']:
base_style.pop(key, None)
# Make the style dict for the line collections (the bars).
eb_lines_style = {**base_style, 'color': ecolor}
if elinewidth:
eb_lines_style['linewidth'] = elinewidth
elif 'linewidth' in kwargs:
eb_lines_style['linewidth'] = kwargs['linewidth']
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
if key in kwargs:
eb_lines_style[key] = kwargs[key]
# Make the style dict for caps (the "hats").
eb_cap_style = {**base_style, 'linestyle': 'None'}
if capsize is None:
capsize = mpl.rcParams["errorbar.capsize"]
if capsize > 0:
eb_cap_style['markersize'] = 2. * capsize
if capthick is not None:
eb_cap_style['markeredgewidth'] = capthick
eb_cap_style['color'] = ecolor
def _apply_mask(arrays, mask):
# Return, for each array in *arrays*, the elements for which *mask*
# is True, without using fancy indexing.
return [[*itertools.compress(array, mask)] for array in arrays]
def _extract_errs(err, data, lomask, himask):
# For separate +/- error values we need to unpack err
if len(err.shape) == 2:
low_err, high_err = err
else:
low_err, high_err = err, err
lows = np.where(lomask | ~everymask, data, data - low_err)
highs = np.where(himask | ~everymask, data, data + high_err)
return lows, highs
# collect drawn items while looping over the three coordinates
errlines, caplines, limmarks = [], [], []
# list of endpoint coordinates, used for auto-scaling
coorderrs = []
# define the markers used for errorbar caps and limits below
# the dictionary key is mapped by the `i_xyz` helper dictionary
capmarker = {0: '|', 1: '|', 2: '_'}
i_xyz = {'x': 0, 'y': 1, 'z': 2}
# Calculate marker size from points to quiver length. Because these are
# not markers, and 3D Axes do not use the normal transform stack, this
# is a bit involved. Since the quiver arrows will change size as the
# scene is rotated, they are given a standard size based on viewing
# them directly in planar form.
quiversize = eb_cap_style.get('markersize',
mpl.rcParams['lines.markersize']) ** 2
quiversize *= self.figure.dpi / 72
quiversize = self.transAxes.inverted().transform([
(0, 0), (quiversize, quiversize)])
quiversize = np.mean(np.diff(quiversize, axis=0))
# quiversize is now in Axes coordinates, and to convert back to data
# coordinates, we need to run it through the inverse 3D transform. For
# consistency, this uses a fixed elevation, azimuth, and roll.
with cbook._setattr_cm(self, elev=0, azim=0, roll=0):
invM = np.linalg.inv(self.get_proj())
# elev=azim=roll=0 produces the Y-Z plane, so quiversize in 2D 'x' is
# 'y' in 3D, hence the 1 index.
quiversize = np.dot(invM, [quiversize, 0, 0, 0])[1]
# Quivers use a fixed 15-degree arrow head, so scale up the length so
# that the size corresponds to the base. In other words, this constant
# corresponds to the equation tan(15) = (base / 2) / (arrow length).
quiversize *= 1.8660254037844388
eb_quiver_style = {**eb_cap_style,
'length': quiversize, 'arrow_length_ratio': 1}
eb_quiver_style.pop('markersize', None)
# loop over x-, y-, and z-direction and draw relevant elements
for zdir, data, err, lolims, uplims in zip(
['x', 'y', 'z'], [x, y, z], [xerr, yerr, zerr],
[xlolims, ylolims, zlolims], [xuplims, yuplims, zuplims]):
dir_vector = art3d.get_dir_vector(zdir)
i_zdir = i_xyz[zdir]
if err is None:
continue
if not np.iterable(err):
err = [err] * len(data)
err = np.atleast_1d(err)
# arrays fine here, they are booleans and hence not units
lolims = np.broadcast_to(lolims, len(data)).astype(bool)
uplims = np.broadcast_to(uplims, len(data)).astype(bool)
# a nested list structure that expands to (xl,xh),(yl,yh),(zl,zh),
# where x/y/z and l/h correspond to dimensions and low/high
# positions of errorbars in a dimension we're looping over
coorderr = [
_extract_errs(err * dir_vector[i], coord, lolims, uplims)
for i, coord in enumerate([x, y, z])]
(xl, xh), (yl, yh), (zl, zh) = coorderr
# draws capmarkers - flat caps orthogonal to the error bars
nolims = ~(lolims | uplims)
if nolims.any() and capsize > 0:
lo_caps_xyz = _apply_mask([xl, yl, zl], nolims & everymask)
hi_caps_xyz = _apply_mask([xh, yh, zh], nolims & everymask)
# setting '_' for z-caps and '|' for x- and y-caps;
# these markers will rotate as the viewing angle changes
cap_lo = art3d.Line3D(*lo_caps_xyz, ls='',
marker=capmarker[i_zdir],
**eb_cap_style)
cap_hi = art3d.Line3D(*hi_caps_xyz, ls='',
marker=capmarker[i_zdir],
**eb_cap_style)
self.add_line(cap_lo)
self.add_line(cap_hi)
caplines.append(cap_lo)
caplines.append(cap_hi)
if lolims.any():
xh0, yh0, zh0 = _apply_mask([xh, yh, zh], lolims & everymask)
self.quiver(xh0, yh0, zh0, *dir_vector, **eb_quiver_style)
if uplims.any():
xl0, yl0, zl0 = _apply_mask([xl, yl, zl], uplims & everymask)
self.quiver(xl0, yl0, zl0, *-dir_vector, **eb_quiver_style)
errline = art3d.Line3DCollection(np.array(coorderr).T,
**eb_lines_style)
self.add_collection(errline)
errlines.append(errline)
coorderrs.append(coorderr)
coorderrs = np.array(coorderrs)
def _digout_minmax(err_arr, coord_label):
return (np.nanmin(err_arr[:, i_xyz[coord_label], :, :]),
np.nanmax(err_arr[:, i_xyz[coord_label], :, :]))
minx, maxx = _digout_minmax(coorderrs, 'x')
miny, maxy = _digout_minmax(coorderrs, 'y')
minz, maxz = _digout_minmax(coorderrs, 'z')
self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
# Adapting errorbar containers for 3d case, assuming z-axis points "up"
errorbar_container = mcontainer.ErrorbarContainer(
(data_line, tuple(caplines), tuple(errlines)),
has_xerr=(xerr is not None or yerr is not None),
has_yerr=(zerr is not None),
label=label)
self.containers.append(errorbar_container)
return errlines, caplines, limmarks
@_api.make_keyword_only("3.8", "call_axes_locator")
def get_tightbbox(self, renderer=None, call_axes_locator=True,
bbox_extra_artists=None, *, for_layout_only=False):
ret = super().get_tightbbox(renderer,
call_axes_locator=call_axes_locator,
bbox_extra_artists=bbox_extra_artists,
for_layout_only=for_layout_only)
batch = [ret]
if self._axis3don:
for axis in self._axis_map.values():
if axis.get_visible():
axis_bb = martist._get_tightbbox_for_layout_only(
axis, renderer)
if axis_bb:
batch.append(axis_bb)
return mtransforms.Bbox.union(batch)
@_preprocess_data()
def stem(self, x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-',
bottom=0, label=None, orientation='z'):
"""
Create a 3D stem plot.
A stem plot draws lines perpendicular to a baseline, and places markers
at the heads. By default, the baseline is defined by *x* and *y*, and
stems are drawn vertically from *bottom* to *z*.
Parameters
----------
x, y, z : array-like
The positions of the heads of the stems. The stems are drawn along
the *orientation*-direction from the baseline at *bottom* (in the
*orientation*-coordinate) to the heads. By default, the *x* and *y*
positions are used for the baseline and *z* for the head position,
but this can be changed by *orientation*.
linefmt : str, default: 'C0-'
A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:
========= =============
Character Line Style
========= =============
``'-'`` solid line
``'--'`` dashed line
``'-.'`` dash-dot line
``':'`` dotted line
========= =============
Note: While it is technically possible to specify valid formats
other than color or color and linestyle (e.g. 'rx' or '-.'), this
is beyond the intention of the method and will most likely not
result in a reasonable plot.
markerfmt : str, default: 'C0o'
A string defining the properties of the markers at the stem heads.
basefmt : str, default: 'C3-'
A format string defining the properties of the baseline.
bottom : float, default: 0
The position of the baseline, in *orientation*-coordinates.
label : str, default: None
The label to use for the stems in legends.
orientation : {'x', 'y', 'z'}, default: 'z'
The direction along which stems are drawn.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
Returns
-------
`.StemContainer`
The container may be treated like a tuple
(*markerline*, *stemlines*, *baseline*)
Examples
--------
.. plot:: gallery/mplot3d/stem3d_demo.py
"""
from matplotlib.container import StemContainer
had_data = self.has_data()
_api.check_in_list(['x', 'y', 'z'], orientation=orientation)
xlim = (np.min(x), np.max(x))
ylim = (np.min(y), np.max(y))
zlim = (np.min(z), np.max(z))
# Determine the appropriate plane for the baseline and the direction of
# stemlines based on the value of orientation.
if orientation == 'x':
basex, basexlim = y, ylim
basey, baseylim = z, zlim
lines = [[(bottom, thisy, thisz), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
elif orientation == 'y':
basex, basexlim = x, xlim
basey, baseylim = z, zlim
lines = [[(thisx, bottom, thisz), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
else:
basex, basexlim = x, xlim
basey, baseylim = y, ylim
lines = [[(thisx, thisy, bottom), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
# Determine style for stem lines.
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
if linestyle is None:
linestyle = mpl.rcParams['lines.linestyle']
# Plot everything in required order.
baseline, = self.plot(basex, basey, basefmt, zs=bottom,
zdir=orientation, label='_nolegend_')
stemlines = art3d.Line3DCollection(
lines, linestyles=linestyle, colors=linecolor, label='_nolegend_')
self.add_collection(stemlines)
markerline, = self.plot(x, y, z, markerfmt, label='_nolegend_')
stem_container = StemContainer((markerline, stemlines, baseline),
label=label)
self.add_container(stem_container)
jx, jy, jz = art3d.juggle_axes(basexlim, baseylim, [bottom, bottom],
orientation)
self.auto_scale_xyz([*jx, *xlim], [*jy, *ylim], [*jz, *zlim], had_data)
return stem_container
stem3D = stem
def get_test_data(delta=0.05):
"""Return a tuple X, Y, Z with a test data set."""
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
(2 * np.pi * 0.5 * 1.5))
Z = Z2 - Z1
X = X * 10
Y = Y * 10
Z = Z * 500
return X, Y, Z
|