File size: 10,575 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
Tools for triangular grids.
"""

import numpy as np

from matplotlib import _api
from matplotlib.tri import Triangulation


class TriAnalyzer:
    """
    Define basic tools for triangular mesh analysis and improvement.

    A TriAnalyzer encapsulates a `.Triangulation` object and provides basic
    tools for mesh analysis and mesh improvement.

    Attributes
    ----------
    scale_factors

    Parameters
    ----------
    triangulation : `~matplotlib.tri.Triangulation`
        The encapsulated triangulation to analyze.
    """

    def __init__(self, triangulation):
        _api.check_isinstance(Triangulation, triangulation=triangulation)
        self._triangulation = triangulation

    @property
    def scale_factors(self):
        """
        Factors to rescale the triangulation into a unit square.

        Returns
        -------
        (float, float)
            Scaling factors (kx, ky) so that the triangulation
            ``[triangulation.x * kx, triangulation.y * ky]``
            fits exactly inside a unit square.
        """
        compressed_triangles = self._triangulation.get_masked_triangles()
        node_used = (np.bincount(np.ravel(compressed_triangles),
                                 minlength=self._triangulation.x.size) != 0)
        return (1 / np.ptp(self._triangulation.x[node_used]),
                1 / np.ptp(self._triangulation.y[node_used]))

    def circle_ratios(self, rescale=True):
        """
        Return a measure of the triangulation triangles flatness.

        The ratio of the incircle radius over the circumcircle radius is a
        widely used indicator of a triangle flatness.
        It is always ``<= 0.5`` and ``== 0.5`` only for equilateral
        triangles. Circle ratios below 0.01 denote very flat triangles.

        To avoid unduly low values due to a difference of scale between the 2
        axis, the triangular mesh can first be rescaled to fit inside a unit
        square with `scale_factors` (Only if *rescale* is True, which is
        its default value).

        Parameters
        ----------
        rescale : bool, default: True
            If True, internally rescale (based on `scale_factors`), so that the
            (unmasked) triangles fit exactly inside a unit square mesh.

        Returns
        -------
        masked array
            Ratio of the incircle radius over the circumcircle radius, for
            each 'rescaled' triangle of the encapsulated triangulation.
            Values corresponding to masked triangles are masked out.

        """
        # Coords rescaling
        if rescale:
            (kx, ky) = self.scale_factors
        else:
            (kx, ky) = (1.0, 1.0)
        pts = np.vstack([self._triangulation.x*kx,
                         self._triangulation.y*ky]).T
        tri_pts = pts[self._triangulation.triangles]
        # Computes the 3 side lengths
        a = tri_pts[:, 1, :] - tri_pts[:, 0, :]
        b = tri_pts[:, 2, :] - tri_pts[:, 1, :]
        c = tri_pts[:, 0, :] - tri_pts[:, 2, :]
        a = np.hypot(a[:, 0], a[:, 1])
        b = np.hypot(b[:, 0], b[:, 1])
        c = np.hypot(c[:, 0], c[:, 1])
        # circumcircle and incircle radii
        s = (a+b+c)*0.5
        prod = s*(a+b-s)*(a+c-s)*(b+c-s)
        # We have to deal with flat triangles with infinite circum_radius
        bool_flat = (prod == 0.)
        if np.any(bool_flat):
            # Pathologic flow
            ntri = tri_pts.shape[0]
            circum_radius = np.empty(ntri, dtype=np.float64)
            circum_radius[bool_flat] = np.inf
            abc = a*b*c
            circum_radius[~bool_flat] = abc[~bool_flat] / (
                4.0*np.sqrt(prod[~bool_flat]))
        else:
            # Normal optimized flow
            circum_radius = (a*b*c) / (4.0*np.sqrt(prod))
        in_radius = (a*b*c) / (4.0*circum_radius*s)
        circle_ratio = in_radius/circum_radius
        mask = self._triangulation.mask
        if mask is None:
            return circle_ratio
        else:
            return np.ma.array(circle_ratio, mask=mask)

    def get_flat_tri_mask(self, min_circle_ratio=0.01, rescale=True):
        """
        Eliminate excessively flat border triangles from the triangulation.

        Returns a mask *new_mask* which allows to clean the encapsulated
        triangulation from its border-located flat triangles
        (according to their :meth:`circle_ratios`).
        This mask is meant to be subsequently applied to the triangulation
        using `.Triangulation.set_mask`.
        *new_mask* is an extension of the initial triangulation mask
        in the sense that an initially masked triangle will remain masked.

        The *new_mask* array is computed recursively; at each step flat
        triangles are removed only if they share a side with the current mesh
        border. Thus, no new holes in the triangulated domain will be created.

        Parameters
        ----------
        min_circle_ratio : float, default: 0.01
            Border triangles with incircle/circumcircle radii ratio r/R will
            be removed if r/R < *min_circle_ratio*.
        rescale : bool, default: True
            If True, first, internally rescale (based on `scale_factors`) so
            that the (unmasked) triangles fit exactly inside a unit square
            mesh.  This rescaling accounts for the difference of scale which
            might exist between the 2 axis.

        Returns
        -------
        array of bool
            Mask to apply to encapsulated triangulation.
            All the initially masked triangles remain masked in the
            *new_mask*.

        Notes
        -----
        The rationale behind this function is that a Delaunay
        triangulation - of an unstructured set of points - sometimes contains
        almost flat triangles at its border, leading to artifacts in plots
        (especially for high-resolution contouring).
        Masked with computed *new_mask*, the encapsulated
        triangulation would contain no more unmasked border triangles
        with a circle ratio below *min_circle_ratio*, thus improving the
        mesh quality for subsequent plots or interpolation.
        """
        # Recursively computes the mask_current_borders, true if a triangle is
        # at the border of the mesh OR touching the border through a chain of
        # invalid aspect ratio masked_triangles.
        ntri = self._triangulation.triangles.shape[0]
        mask_bad_ratio = self.circle_ratios(rescale) < min_circle_ratio

        current_mask = self._triangulation.mask
        if current_mask is None:
            current_mask = np.zeros(ntri, dtype=bool)
        valid_neighbors = np.copy(self._triangulation.neighbors)
        renum_neighbors = np.arange(ntri, dtype=np.int32)
        nadd = -1
        while nadd != 0:
            # The active wavefront is the triangles from the border (unmasked
            # but with a least 1 neighbor equal to -1
            wavefront = (np.min(valid_neighbors, axis=1) == -1) & ~current_mask
            # The element from the active wavefront will be masked if their
            # circle ratio is bad.
            added_mask = wavefront & mask_bad_ratio
            current_mask = added_mask | current_mask
            nadd = np.sum(added_mask)

            # now we have to update the tables valid_neighbors
            valid_neighbors[added_mask, :] = -1
            renum_neighbors[added_mask] = -1
            valid_neighbors = np.where(valid_neighbors == -1, -1,
                                       renum_neighbors[valid_neighbors])

        return np.ma.filled(current_mask, True)

    def _get_compressed_triangulation(self):
        """
        Compress (if masked) the encapsulated triangulation.

        Returns minimal-length triangles array (*compressed_triangles*) and
        coordinates arrays (*compressed_x*, *compressed_y*) that can still
        describe the unmasked triangles of the encapsulated triangulation.

        Returns
        -------
        compressed_triangles : array-like
            the returned compressed triangulation triangles
        compressed_x : array-like
            the returned compressed triangulation 1st coordinate
        compressed_y : array-like
            the returned compressed triangulation 2nd coordinate
        tri_renum : int array
            renumbering table to translate the triangle numbers from the
            encapsulated triangulation into the new (compressed) renumbering.
            -1 for masked triangles (deleted from *compressed_triangles*).
        node_renum : int array
            renumbering table to translate the point numbers from the
            encapsulated triangulation into the new (compressed) renumbering.
            -1 for unused points (i.e. those deleted from *compressed_x* and
            *compressed_y*).

        """
        # Valid triangles and renumbering
        tri_mask = self._triangulation.mask
        compressed_triangles = self._triangulation.get_masked_triangles()
        ntri = self._triangulation.triangles.shape[0]
        if tri_mask is not None:
            tri_renum = self._total_to_compress_renum(~tri_mask)
        else:
            tri_renum = np.arange(ntri, dtype=np.int32)

        # Valid nodes and renumbering
        valid_node = (np.bincount(np.ravel(compressed_triangles),
                                  minlength=self._triangulation.x.size) != 0)
        compressed_x = self._triangulation.x[valid_node]
        compressed_y = self._triangulation.y[valid_node]
        node_renum = self._total_to_compress_renum(valid_node)

        # Now renumbering the valid triangles nodes
        compressed_triangles = node_renum[compressed_triangles]

        return (compressed_triangles, compressed_x, compressed_y, tri_renum,
                node_renum)

    @staticmethod
    def _total_to_compress_renum(valid):
        """
        Parameters
        ----------
        valid : 1D bool array
            Validity mask.

        Returns
        -------
        int array
            Array so that (`valid_array` being a compressed array
            based on a `masked_array` with mask ~*valid*):

            - For all i with valid[i] = True:
              valid_array[renum[i]] = masked_array[i]
            - For all i with valid[i] = False:
              renum[i] = -1 (invalid value)
        """
        renum = np.full(np.size(valid), -1, dtype=np.int32)
        n_valid = np.sum(valid)
        renum[valid] = np.arange(n_valid, dtype=np.int32)
        return renum