File size: 32,861 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
import datetime
import platform
import re
from unittest import mock
import contourpy
import numpy as np
from numpy.testing import (
assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal)
import matplotlib as mpl
from matplotlib import pyplot as plt, rc_context, ticker
from matplotlib.colors import LogNorm, same_color
import matplotlib.patches as mpatches
from matplotlib.testing.decorators import check_figures_equal, image_comparison
import pytest
# Helper to test the transition from ContourSets holding multiple Collections to being a
# single Collection; remove once the deprecated old layout expires.
def _maybe_split_collections(do_split):
if not do_split:
return
for fig in map(plt.figure, plt.get_fignums()):
for ax in fig.axes:
for coll in ax.collections:
if isinstance(coll, mpl.contour.ContourSet):
with pytest.warns(mpl._api.MatplotlibDeprecationWarning):
coll.collections
def test_contour_shape_1d_valid():
x = np.arange(10)
y = np.arange(9)
z = np.random.random((9, 10))
fig, ax = plt.subplots()
ax.contour(x, y, z)
def test_contour_shape_2d_valid():
x = np.arange(10)
y = np.arange(9)
xg, yg = np.meshgrid(x, y)
z = np.random.random((9, 10))
fig, ax = plt.subplots()
ax.contour(xg, yg, z)
@pytest.mark.parametrize("args, message", [
((np.arange(9), np.arange(9), np.empty((9, 10))),
'Length of x (9) must match number of columns in z (10)'),
((np.arange(10), np.arange(10), np.empty((9, 10))),
'Length of y (10) must match number of rows in z (9)'),
((np.empty((10, 10)), np.arange(10), np.empty((9, 10))),
'Number of dimensions of x (2) and y (1) do not match'),
((np.arange(10), np.empty((10, 10)), np.empty((9, 10))),
'Number of dimensions of x (1) and y (2) do not match'),
((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))),
'Shapes of x (9, 9) and z (9, 10) do not match'),
((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))),
'Shapes of y (9, 9) and z (9, 10) do not match'),
((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))),
'Inputs x and y must be 1D or 2D, not 3D'),
((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))),
'Input z must be 2D, not 3D'),
(([[0]],), # github issue 8197
'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
(([0], [0], [[0]]),
'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
])
def test_contour_shape_error(args, message):
fig, ax = plt.subplots()
with pytest.raises(TypeError, match=re.escape(message)):
ax.contour(*args)
def test_contour_no_valid_levels():
fig, ax = plt.subplots()
# no warning for empty levels.
ax.contour(np.random.rand(9, 9), levels=[])
# no warning if levels is given and is not within the range of z.
cs = ax.contour(np.arange(81).reshape((9, 9)), levels=[100])
# ... and if fmt is given.
ax.clabel(cs, fmt={100: '%1.2f'})
# no warning if z is uniform.
ax.contour(np.ones((9, 9)))
def test_contour_Nlevels():
# A scalar levels arg or kwarg should trigger auto level generation.
# https://github.com/matplotlib/matplotlib/issues/11913
z = np.arange(12).reshape((3, 4))
fig, ax = plt.subplots()
cs1 = ax.contour(z, 5)
assert len(cs1.levels) > 1
cs2 = ax.contour(z, levels=5)
assert (cs1.levels == cs2.levels).all()
@check_figures_equal(extensions=['png'])
def test_contour_set_paths(fig_test, fig_ref):
cs_test = fig_test.subplots().contour([[0, 1], [1, 2]])
cs_ref = fig_ref.subplots().contour([[1, 0], [2, 1]])
cs_test.set_paths(cs_ref.get_paths())
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_manual_labels'], remove_text=True, style='mpl20', tol=0.26)
def test_contour_manual_labels(split_collections):
x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
z = np.max(np.dstack([abs(x), abs(y)]), 2)
plt.figure(figsize=(6, 2), dpi=200)
cs = plt.contour(x, y, z)
_maybe_split_collections(split_collections)
pts = np.array([(1.0, 3.0), (1.0, 4.4), (1.0, 6.0)])
plt.clabel(cs, manual=pts)
pts = np.array([(2.0, 3.0), (2.0, 4.4), (2.0, 6.0)])
plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g'))
def test_contour_manual_moveto():
x = np.linspace(-10, 10)
y = np.linspace(-10, 10)
X, Y = np.meshgrid(x, y)
Z = X**2 * 1 / Y**2 - 1
contours = plt.contour(X, Y, Z, levels=[0, 100])
# This point lies on the `MOVETO` line for the 100 contour
# but is actually closest to the 0 contour
point = (1.3, 1)
clabels = plt.clabel(contours, manual=[point])
# Ensure that the 0 contour was chosen, not the 100 contour
assert clabels[0].get_text() == "0"
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_disconnected_segments'],
remove_text=True, style='mpl20', extensions=['png'])
def test_contour_label_with_disconnected_segments(split_collections):
x, y = np.mgrid[-1:1:21j, -1:1:21j]
z = 1 / np.sqrt(0.01 + (x + 0.3) ** 2 + y ** 2)
z += 1 / np.sqrt(0.01 + (x - 0.3) ** 2 + y ** 2)
plt.figure()
cs = plt.contour(x, y, z, levels=[7])
# Adding labels should invalidate the old style
_maybe_split_collections(split_collections)
cs.clabel(manual=[(0.2, 0.1)])
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True)
def test_given_colors_levels_and_extends(split_collections):
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
_, axs = plt.subplots(2, 4)
data = np.arange(12).reshape(3, 4)
colors = ['red', 'yellow', 'pink', 'blue', 'black']
levels = [2, 4, 8, 10]
for i, ax in enumerate(axs.flat):
filled = i % 2 == 0.
extend = ['neither', 'min', 'max', 'both'][i // 2]
if filled:
# If filled, we have 3 colors with no extension,
# 4 colors with one extension, and 5 colors with both extensions
first_color = 1 if extend in ['max', 'neither'] else None
last_color = -1 if extend in ['min', 'neither'] else None
c = ax.contourf(data, colors=colors[first_color:last_color],
levels=levels, extend=extend)
else:
# If not filled, we have 4 levels and 4 colors
c = ax.contour(data, colors=colors[:-1],
levels=levels, extend=extend)
plt.colorbar(c, ax=ax)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_log_locator.svg'], style='mpl20', remove_text=False)
def test_log_locator_levels(split_collections):
fig, ax = plt.subplots()
N = 100
x = np.linspace(-3.0, 3.0, N)
y = np.linspace(-2.0, 2.0, N)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
data = Z1 + 50 * Z2
c = ax.contourf(data, locator=ticker.LogLocator())
assert_array_almost_equal(c.levels, np.power(10.0, np.arange(-6, 3)))
cb = fig.colorbar(c, ax=ax)
assert_array_almost_equal(cb.ax.get_yticks(), c.levels)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_datetime_axis.png'], style='mpl20')
def test_contour_datetime_axis(split_collections):
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
base = datetime.datetime(2013, 1, 1)
x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
y = np.arange(20)
z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
z = z1 * z2
plt.subplot(221)
plt.contour(x, y, z)
plt.subplot(222)
plt.contourf(x, y, z)
x = np.repeat(x[np.newaxis], 20, axis=0)
y = np.repeat(y[:, np.newaxis], 20, axis=1)
plt.subplot(223)
plt.contour(x, y, z)
plt.subplot(224)
plt.contourf(x, y, z)
for ax in fig.get_axes():
for label in ax.get_xticklabels():
label.set_ha('right')
label.set_rotation(30)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_test_label_transforms.png'],
remove_text=True, style='mpl20', tol=1.1)
def test_labels(split_collections):
# Adapted from pylab_examples example code: contour_demo.py
# see issues #2475, #2843, and #2818 for explanation
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
(2 * np.pi * 0.5 * 1.5))
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
fig, ax = plt.subplots(1, 1)
CS = ax.contour(X, Y, Z)
disp_units = [(216, 177), (359, 290), (521, 406)]
data_units = [(-2, .5), (0, -1.5), (2.8, 1)]
# Adding labels should invalidate the old style
_maybe_split_collections(split_collections)
CS.clabel()
for x, y in data_units:
CS.add_label_near(x, y, inline=True, transform=None)
for x, y in disp_units:
CS.add_label_near(x, y, inline=True, transform=False)
_maybe_split_collections(split_collections)
def test_label_contour_start():
# Set up data and figure/axes that result in automatic labelling adding the
# label to the start of a contour
_, ax = plt.subplots(dpi=100)
lats = lons = np.linspace(-np.pi / 2, np.pi / 2, 50)
lons, lats = np.meshgrid(lons, lats)
wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons)
mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2)
data = wave + mean
cs = ax.contour(lons, lats, data)
with mock.patch.object(
cs, '_split_path_and_get_label_rotation',
wraps=cs._split_path_and_get_label_rotation) as mocked_splitter:
# Smoke test that we can add the labels
cs.clabel(fontsize=9)
# Verify at least one label was added to the start of a contour. I.e. the
# splitting method was called with idx=0 at least once.
idxs = [cargs[0][1] for cargs in mocked_splitter.call_args_list]
assert 0 in idxs
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_corner_mask_False.png', 'contour_corner_mask_True.png'],
remove_text=True, tol=1.88)
def test_corner_mask(split_collections):
n = 60
mask_level = 0.95
noise_amp = 1.0
np.random.seed([1])
x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n))
z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n)
mask = np.random.rand(n, n) >= mask_level
z = np.ma.array(z, mask=mask)
for corner_mask in [False, True]:
plt.figure()
plt.contourf(z, corner_mask=corner_mask)
_maybe_split_collections(split_collections)
def test_contourf_decreasing_levels():
# github issue 5477.
z = [[0.1, 0.3], [0.5, 0.7]]
plt.figure()
with pytest.raises(ValueError):
plt.contourf(z, [1.0, 0.0])
def test_contourf_symmetric_locator():
# github issue 7271
z = np.arange(12).reshape((3, 4))
locator = plt.MaxNLocator(nbins=4, symmetric=True)
cs = plt.contourf(z, locator=locator)
assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))
def test_circular_contour_warning():
# Check that almost circular contours don't throw a warning
x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4))
r = np.hypot(x, y)
plt.figure()
cs = plt.contour(x, y, r)
plt.clabel(cs)
@pytest.mark.parametrize("use_clabeltext, contour_zorder, clabel_zorder",
[(True, 123, 1234), (False, 123, 1234),
(True, 123, None), (False, 123, None)])
def test_clabel_zorder(use_clabeltext, contour_zorder, clabel_zorder):
x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
z = np.max(np.dstack([abs(x), abs(y)]), 2)
fig, (ax1, ax2) = plt.subplots(ncols=2)
cs = ax1.contour(x, y, z, zorder=contour_zorder)
cs_filled = ax2.contourf(x, y, z, zorder=contour_zorder)
clabels1 = cs.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext)
clabels2 = cs_filled.clabel(zorder=clabel_zorder,
use_clabeltext=use_clabeltext)
if clabel_zorder is None:
expected_clabel_zorder = 2+contour_zorder
else:
expected_clabel_zorder = clabel_zorder
for clabel in clabels1:
assert clabel.get_zorder() == expected_clabel_zorder
for clabel in clabels2:
assert clabel.get_zorder() == expected_clabel_zorder
def test_clabel_with_large_spacing():
# When the inline spacing is large relative to the contour, it may cause the
# entire contour to be removed. In current implementation, one line segment is
# retained between the identified points.
# This behavior may be worth reconsidering, but check to be sure we do not produce
# an invalid path, which results in an error at clabel call time.
# see gh-27045 for more information
x = y = np.arange(-3.0, 3.01, 0.05)
X, Y = np.meshgrid(x, y)
Z = np.exp(-X**2 - Y**2)
fig, ax = plt.subplots()
contourset = ax.contour(X, Y, Z, levels=[0.01, 0.2, .5, .8])
ax.clabel(contourset, inline_spacing=100)
# tol because ticks happen to fall on pixel boundaries so small
# floating point changes in tick location flip which pixel gets
# the tick.
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_log_extension.png'],
remove_text=True, style='mpl20',
tol=1.444)
def test_contourf_log_extension(split_collections):
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
# Test that contourf with lognorm is extended correctly
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
fig.subplots_adjust(left=0.05, right=0.95)
# make data set with large range e.g. between 1e-8 and 1e10
data_exp = np.linspace(-7.5, 9.5, 1200)
data = np.power(10, data_exp).reshape(30, 40)
# make manual levels e.g. between 1e-4 and 1e-6
levels_exp = np.arange(-4., 7.)
levels = np.power(10., levels_exp)
# original data
c1 = ax1.contourf(data,
norm=LogNorm(vmin=data.min(), vmax=data.max()))
# just show data in levels
c2 = ax2.contourf(data, levels=levels,
norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
extend='neither')
# extend data from levels
c3 = ax3.contourf(data, levels=levels,
norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
extend='both')
cb = plt.colorbar(c1, ax=ax1)
assert cb.ax.get_ylim() == (1e-8, 1e10)
cb = plt.colorbar(c2, ax=ax2)
assert_array_almost_equal_nulp(cb.ax.get_ylim(), np.array((1e-4, 1e6)))
cb = plt.colorbar(c3, ax=ax3)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(
['contour_addlines.png'], remove_text=True, style='mpl20',
tol=0.15 if platform.machine() in ('aarch64', 'ppc64le', 's390x')
else 0.03)
# tolerance is because image changed minutely when tick finding on
# colorbars was cleaned up...
def test_contour_addlines(split_collections):
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
fig, ax = plt.subplots()
np.random.seed(19680812)
X = np.random.rand(10, 10)*10000
pcm = ax.pcolormesh(X)
# add 1000 to make colors visible...
cont = ax.contour(X+1000)
cb = fig.colorbar(pcm)
cb.add_lines(cont)
assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_uneven'],
extensions=['png'], remove_text=True, style='mpl20')
def test_contour_uneven(split_collections):
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
z = np.arange(24).reshape(4, 6)
fig, axs = plt.subplots(1, 2)
ax = axs[0]
cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
fig.colorbar(cs, ax=ax, spacing='proportional')
ax = axs[1]
cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
fig.colorbar(cs, ax=ax, spacing='uniform')
_maybe_split_collections(split_collections)
@pytest.mark.parametrize(
"rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected", [
(1.23, None, None, 1.23),
(1.23, 4.24, None, 4.24),
(1.23, 4.24, 5.02, 5.02)
])
def test_contour_linewidth(
rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected):
with rc_context(rc={"lines.linewidth": rc_lines_linewidth,
"contour.linewidth": rc_contour_linewidth}):
fig, ax = plt.subplots()
X = np.arange(4*3).reshape(4, 3)
cs = ax.contour(X, linewidths=call_linewidths)
assert cs.get_linewidths()[0] == expected
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
assert cs.tlinewidths[0][0] == expected
@pytest.mark.backend("pdf")
def test_label_nonagg():
# This should not crash even if the canvas doesn't have a get_renderer().
plt.clabel(plt.contour([[1, 2], [3, 4]]))
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_closed_line_loop'],
extensions=['png'], remove_text=True)
def test_contour_closed_line_loop(split_collections):
# github issue 19568.
z = [[0, 0, 0], [0, 2, 0], [0, 0, 0], [2, 1, 2]]
fig, ax = plt.subplots(figsize=(2, 2))
ax.contour(z, [0.5], linewidths=[20], alpha=0.7)
ax.set_xlim(-0.1, 2.1)
ax.set_ylim(-0.1, 3.1)
_maybe_split_collections(split_collections)
def test_quadcontourset_reuse():
# If QuadContourSet returned from one contour(f) call is passed as first
# argument to another the underlying C++ contour generator will be reused.
x, y = np.meshgrid([0.0, 1.0], [0.0, 1.0])
z = x + y
fig, ax = plt.subplots()
qcs1 = ax.contourf(x, y, z)
qcs2 = ax.contour(x, y, z)
assert qcs2._contour_generator != qcs1._contour_generator
qcs3 = ax.contour(qcs1, z)
assert qcs3._contour_generator == qcs1._contour_generator
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_manual'],
extensions=['png'], remove_text=True, tol=0.89)
def test_contour_manual(split_collections):
# Manually specifying contour lines/polygons to plot.
from matplotlib.contour import ContourSet
fig, ax = plt.subplots(figsize=(4, 4))
cmap = 'viridis'
# Segments only (no 'kind' codes).
lines0 = [[[2, 0], [1, 2], [1, 3]]] # Single line.
lines1 = [[[3, 0], [3, 2]], [[3, 3], [3, 4]]] # Two lines.
filled01 = [[[0, 0], [0, 4], [1, 3], [1, 2], [2, 0]]]
filled12 = [[[2, 0], [3, 0], [3, 2], [1, 3], [1, 2]], # Two polygons.
[[1, 4], [3, 4], [3, 3]]]
ContourSet(ax, [0, 1, 2], [filled01, filled12], filled=True, cmap=cmap)
ContourSet(ax, [1, 2], [lines0, lines1], linewidths=3, colors=['r', 'k'])
# Segments and kind codes (1 = MOVETO, 2 = LINETO, 79 = CLOSEPOLY).
segs = [[[4, 0], [7, 0], [7, 3], [4, 3], [4, 0],
[5, 1], [5, 2], [6, 2], [6, 1], [5, 1]]]
kinds = [[1, 2, 2, 2, 79, 1, 2, 2, 2, 79]] # Polygon containing hole.
ContourSet(ax, [2, 3], [segs], [kinds], filled=True, cmap=cmap)
ContourSet(ax, [2], [segs], [kinds], colors='k', linewidths=3)
_maybe_split_collections(split_collections)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_line_start_on_corner_edge'],
extensions=['png'], remove_text=True)
def test_contour_line_start_on_corner_edge(split_collections):
fig, ax = plt.subplots(figsize=(6, 5))
x, y = np.meshgrid([0, 1, 2, 3, 4], [0, 1, 2])
z = 1.2 - (x - 2)**2 + (y - 1)**2
mask = np.zeros_like(z, dtype=bool)
mask[1, 1] = mask[1, 3] = True
z = np.ma.array(z, mask=mask)
filled = ax.contourf(x, y, z, corner_mask=True)
cbar = fig.colorbar(filled)
lines = ax.contour(x, y, z, corner_mask=True, colors='k')
cbar.add_lines(lines)
_maybe_split_collections(split_collections)
def test_find_nearest_contour():
xy = np.indices((15, 15))
img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
cs = plt.contour(img, 10)
nearest_contour = cs.find_nearest_contour(1, 1, pixel=False)
expected_nearest = (1, 0, 33, 1.965966, 1.965966, 1.866183)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(8, 1, pixel=False)
expected_nearest = (1, 0, 5, 7.550173, 1.587542, 0.547550)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(2, 5, pixel=False)
expected_nearest = (3, 0, 21, 1.884384, 5.023335, 0.013911)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(2, 5, indices=(5, 7), pixel=False)
expected_nearest = (5, 0, 16, 2.628202, 5.0, 0.394638)
assert_array_almost_equal(nearest_contour, expected_nearest)
def test_find_nearest_contour_no_filled():
xy = np.indices((15, 15))
img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
cs = plt.contourf(img, 10)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(1, 1, pixel=False)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(1, 10, indices=(5, 7), pixel=False)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(2, 5, indices=(2, 7), pixel=True)
@mpl.style.context("default")
def test_contour_autolabel_beyond_powerlimits():
ax = plt.figure().add_subplot()
cs = plt.contour(np.geomspace(1e-6, 1e-4, 100).reshape(10, 10),
levels=[.25e-5, 1e-5, 4e-5])
ax.clabel(cs)
# Currently, the exponent is missing, but that may be fixed in the future.
assert {text.get_text() for text in ax.texts} == {"0.25", "1.00", "4.00"}
def test_contourf_legend_elements():
from matplotlib.patches import Rectangle
x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y
cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#FFFF00', '#FF00FF', '#00FFFF'],
extend='both')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()
artists, labels = cs.legend_elements()
assert labels == ['$x \\leq -1e+250s$',
'$10.0 < x \\leq 30.0$',
'$30.0 < x \\leq 50.0$',
'$x > 1e+250s$']
expected_colors = ('blue', '#FFFF00', '#FF00FF', 'red')
assert all(isinstance(a, Rectangle) for a in artists)
assert all(same_color(a.get_facecolor(), c)
for a, c in zip(artists, expected_colors))
def test_contour_legend_elements():
x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y
colors = ['blue', '#00FF00', 'red']
cs = plt.contour(h, levels=[10, 30, 50],
colors=colors,
extend='both')
artists, labels = cs.legend_elements()
assert labels == ['$x = 10.0$', '$x = 30.0$', '$x = 50.0$']
assert all(isinstance(a, mpl.lines.Line2D) for a in artists)
assert all(same_color(a.get_color(), c)
for a, c in zip(artists, colors))
@pytest.mark.parametrize(
"algorithm, klass",
[('mpl2005', contourpy.Mpl2005ContourGenerator),
('mpl2014', contourpy.Mpl2014ContourGenerator),
('serial', contourpy.SerialContourGenerator),
('threaded', contourpy.ThreadedContourGenerator),
('invalid', None)])
def test_algorithm_name(algorithm, klass):
z = np.array([[1.0, 2.0], [3.0, 4.0]])
if klass is not None:
cs = plt.contourf(z, algorithm=algorithm)
assert isinstance(cs._contour_generator, klass)
else:
with pytest.raises(ValueError):
plt.contourf(z, algorithm=algorithm)
@pytest.mark.parametrize(
"algorithm", ['mpl2005', 'mpl2014', 'serial', 'threaded'])
def test_algorithm_supports_corner_mask(algorithm):
z = np.array([[1.0, 2.0], [3.0, 4.0]])
# All algorithms support corner_mask=False
plt.contourf(z, algorithm=algorithm, corner_mask=False)
# Only some algorithms support corner_mask=True
if algorithm != 'mpl2005':
plt.contourf(z, algorithm=algorithm, corner_mask=True)
else:
with pytest.raises(ValueError):
plt.contourf(z, algorithm=algorithm, corner_mask=True)
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_all_algorithms'],
extensions=['png'], remove_text=True, tol=0.06)
def test_all_algorithms(split_collections):
algorithms = ['mpl2005', 'mpl2014', 'serial', 'threaded']
rng = np.random.default_rng(2981)
x, y = np.meshgrid(np.linspace(0.0, 1.0, 10), np.linspace(0.0, 1.0, 6))
z = np.sin(15*x)*np.cos(10*y) + rng.normal(scale=0.5, size=(6, 10))
mask = np.zeros_like(z, dtype=bool)
mask[3, 7] = True
z = np.ma.array(z, mask=mask)
_, axs = plt.subplots(2, 2)
for ax, algorithm in zip(axs.ravel(), algorithms):
ax.contourf(x, y, z, algorithm=algorithm)
ax.contour(x, y, z, algorithm=algorithm, colors='k')
ax.set_title(algorithm)
_maybe_split_collections(split_collections)
def test_subfigure_clabel():
# Smoke test for gh#23173
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2) - Y**2)
Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2)
Z = (Z1 - Z2) * 2
fig = plt.figure()
figs = fig.subfigures(nrows=1, ncols=2)
for f in figs:
ax = f.subplots()
CS = ax.contour(X, Y, Z)
ax.clabel(CS, inline=True, fontsize=10)
ax.set_title("Simplest default with labels")
@pytest.mark.parametrize(
"style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_linestyles(style):
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Positive contour defaults to solid
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X, Y, Z, 6, colors='k')
ax1.clabel(CS1, fontsize=9, inline=True)
ax1.set_title('Single color - positive contours solid (default)')
assert CS1.linestyles is None # default
# Change linestyles using linestyles kwarg
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X, Y, Z, 6, colors='k', linestyles=style)
ax2.clabel(CS2, fontsize=9, inline=True)
ax2.set_title(f'Single color - positive contours {style}')
assert CS2.linestyles == style
# Ensure linestyles do not change when negative_linestyles is defined
fig3, ax3 = plt.subplots()
CS3 = ax3.contour(X, Y, Z, 6, colors='k', linestyles=style,
negative_linestyles='dashdot')
ax3.clabel(CS3, fontsize=9, inline=True)
ax3.set_title(f'Single color - positive contours {style}')
assert CS3.linestyles == style
@pytest.mark.parametrize(
"style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_negative_linestyles(style):
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Negative contour defaults to dashed
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X, Y, Z, 6, colors='k')
ax1.clabel(CS1, fontsize=9, inline=True)
ax1.set_title('Single color - negative contours dashed (default)')
assert CS1.negative_linestyles == 'dashed' # default
# Change negative_linestyles using rcParams
plt.rcParams['contour.negative_linestyle'] = style
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X, Y, Z, 6, colors='k')
ax2.clabel(CS2, fontsize=9, inline=True)
ax2.set_title(f'Single color - negative contours {style}'
'(using rcParams)')
assert CS2.negative_linestyles == style
# Change negative_linestyles using negative_linestyles kwarg
fig3, ax3 = plt.subplots()
CS3 = ax3.contour(X, Y, Z, 6, colors='k', negative_linestyles=style)
ax3.clabel(CS3, fontsize=9, inline=True)
ax3.set_title(f'Single color - negative contours {style}')
assert CS3.negative_linestyles == style
# Ensure negative_linestyles do not change when linestyles is defined
fig4, ax4 = plt.subplots()
CS4 = ax4.contour(X, Y, Z, 6, colors='k', linestyles='dashdot',
negative_linestyles=style)
ax4.clabel(CS4, fontsize=9, inline=True)
ax4.set_title(f'Single color - negative contours {style}')
assert CS4.negative_linestyles == style
def test_contour_remove():
ax = plt.figure().add_subplot()
orig_children = ax.get_children()
cs = ax.contour(np.arange(16).reshape((4, 4)))
cs.clabel()
assert ax.get_children() != orig_children
cs.remove()
assert ax.get_children() == orig_children
def test_contour_no_args():
fig, ax = plt.subplots()
data = [[0, 1], [1, 0]]
with pytest.raises(TypeError, match=r"contour\(\) takes from 1 to 4"):
ax.contour(Z=data)
def test_contour_clip_path():
fig, ax = plt.subplots()
data = [[0, 1], [1, 0]]
circle = mpatches.Circle([0.5, 0.5], 0.5, transform=ax.transAxes)
cs = ax.contour(data, clip_path=circle)
assert cs.get_clip_path() is not None
def test_bool_autolevel():
x, y = np.random.rand(2, 9)
z = (np.arange(9) % 2).reshape((3, 3)).astype(bool)
m = [[False, False, False], [False, True, False], [False, False, False]]
assert plt.contour(z.tolist()).levels.tolist() == [.5]
assert plt.contour(z).levels.tolist() == [.5]
assert plt.contour(np.ma.array(z, mask=m)).levels.tolist() == [.5]
assert plt.contourf(z.tolist()).levels.tolist() == [0, .5, 1]
assert plt.contourf(z).levels.tolist() == [0, .5, 1]
assert plt.contourf(np.ma.array(z, mask=m)).levels.tolist() == [0, .5, 1]
z = z.ravel()
assert plt.tricontour(x, y, z.tolist()).levels.tolist() == [.5]
assert plt.tricontour(x, y, z).levels.tolist() == [.5]
assert plt.tricontourf(x, y, z.tolist()).levels.tolist() == [0, .5, 1]
assert plt.tricontourf(x, y, z).levels.tolist() == [0, .5, 1]
def test_all_nan():
x = np.array([[np.nan, np.nan], [np.nan, np.nan]])
assert_array_almost_equal(plt.contour(x).levels,
[-1e-13, -7.5e-14, -5e-14, -2.4e-14, 0.0,
2.4e-14, 5e-14, 7.5e-14, 1e-13])
def test_allsegs_allkinds():
x, y = np.meshgrid(np.arange(0, 10, 2), np.arange(0, 10, 2))
z = np.sin(x) * np.cos(y)
cs = plt.contour(x, y, z, levels=[0, 0.5])
# Expect two levels, the first with 5 segments and the second with 4.
for result in [cs.allsegs, cs.allkinds]:
assert len(result) == 2
assert len(result[0]) == 5
assert len(result[1]) == 4
def test_deprecated_apis():
cs = plt.contour(np.arange(16).reshape((4, 4)))
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="collections"):
colls = cs.collections
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tcolors"):
assert_array_equal(cs.tcolors, [c.get_edgecolor() for c in colls])
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
assert cs.tlinewidths == [c.get_linewidth() for c in colls]
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
assert cs.antialiased
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
cs.antialiased = False
with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
assert not cs.antialiased
|