File size: 32,861 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import datetime
import platform
import re
from unittest import mock

import contourpy
import numpy as np
from numpy.testing import (
    assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal)
import matplotlib as mpl
from matplotlib import pyplot as plt, rc_context, ticker
from matplotlib.colors import LogNorm, same_color
import matplotlib.patches as mpatches
from matplotlib.testing.decorators import check_figures_equal, image_comparison
import pytest


# Helper to test the transition from ContourSets holding multiple Collections to being a
# single Collection; remove once the deprecated old layout expires.
def _maybe_split_collections(do_split):
    if not do_split:
        return
    for fig in map(plt.figure, plt.get_fignums()):
        for ax in fig.axes:
            for coll in ax.collections:
                if isinstance(coll, mpl.contour.ContourSet):
                    with pytest.warns(mpl._api.MatplotlibDeprecationWarning):
                        coll.collections


def test_contour_shape_1d_valid():

    x = np.arange(10)
    y = np.arange(9)
    z = np.random.random((9, 10))

    fig, ax = plt.subplots()
    ax.contour(x, y, z)


def test_contour_shape_2d_valid():

    x = np.arange(10)
    y = np.arange(9)
    xg, yg = np.meshgrid(x, y)
    z = np.random.random((9, 10))

    fig, ax = plt.subplots()
    ax.contour(xg, yg, z)


@pytest.mark.parametrize("args, message", [
    ((np.arange(9), np.arange(9), np.empty((9, 10))),
     'Length of x (9) must match number of columns in z (10)'),
    ((np.arange(10), np.arange(10), np.empty((9, 10))),
     'Length of y (10) must match number of rows in z (9)'),
    ((np.empty((10, 10)), np.arange(10), np.empty((9, 10))),
     'Number of dimensions of x (2) and y (1) do not match'),
    ((np.arange(10), np.empty((10, 10)), np.empty((9, 10))),
     'Number of dimensions of x (1) and y (2) do not match'),
    ((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))),
     'Shapes of x (9, 9) and z (9, 10) do not match'),
    ((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))),
     'Shapes of y (9, 9) and z (9, 10) do not match'),
    ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))),
     'Inputs x and y must be 1D or 2D, not 3D'),
    ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))),
     'Input z must be 2D, not 3D'),
    (([[0]],),  # github issue 8197
     'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
    (([0], [0], [[0]]),
     'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
])
def test_contour_shape_error(args, message):
    fig, ax = plt.subplots()
    with pytest.raises(TypeError, match=re.escape(message)):
        ax.contour(*args)


def test_contour_no_valid_levels():
    fig, ax = plt.subplots()
    # no warning for empty levels.
    ax.contour(np.random.rand(9, 9), levels=[])
    # no warning if levels is given and is not within the range of z.
    cs = ax.contour(np.arange(81).reshape((9, 9)), levels=[100])
    # ... and if fmt is given.
    ax.clabel(cs, fmt={100: '%1.2f'})
    # no warning if z is uniform.
    ax.contour(np.ones((9, 9)))


def test_contour_Nlevels():
    # A scalar levels arg or kwarg should trigger auto level generation.
    # https://github.com/matplotlib/matplotlib/issues/11913
    z = np.arange(12).reshape((3, 4))
    fig, ax = plt.subplots()
    cs1 = ax.contour(z, 5)
    assert len(cs1.levels) > 1
    cs2 = ax.contour(z, levels=5)
    assert (cs1.levels == cs2.levels).all()


@check_figures_equal(extensions=['png'])
def test_contour_set_paths(fig_test, fig_ref):
    cs_test = fig_test.subplots().contour([[0, 1], [1, 2]])
    cs_ref = fig_ref.subplots().contour([[1, 0], [2, 1]])

    cs_test.set_paths(cs_ref.get_paths())


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_manual_labels'], remove_text=True, style='mpl20', tol=0.26)
def test_contour_manual_labels(split_collections):
    x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
    z = np.max(np.dstack([abs(x), abs(y)]), 2)

    plt.figure(figsize=(6, 2), dpi=200)
    cs = plt.contour(x, y, z)

    _maybe_split_collections(split_collections)

    pts = np.array([(1.0, 3.0), (1.0, 4.4), (1.0, 6.0)])
    plt.clabel(cs, manual=pts)
    pts = np.array([(2.0, 3.0), (2.0, 4.4), (2.0, 6.0)])
    plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g'))


def test_contour_manual_moveto():
    x = np.linspace(-10, 10)
    y = np.linspace(-10, 10)

    X, Y = np.meshgrid(x, y)

    Z = X**2 * 1 / Y**2 - 1

    contours = plt.contour(X, Y, Z, levels=[0, 100])

    # This point lies on the `MOVETO` line for the 100 contour
    # but is actually closest to the 0 contour
    point = (1.3, 1)
    clabels = plt.clabel(contours, manual=[point])

    # Ensure that the 0 contour was chosen, not the 100 contour
    assert clabels[0].get_text() == "0"


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_disconnected_segments'],
                  remove_text=True, style='mpl20', extensions=['png'])
def test_contour_label_with_disconnected_segments(split_collections):
    x, y = np.mgrid[-1:1:21j, -1:1:21j]
    z = 1 / np.sqrt(0.01 + (x + 0.3) ** 2 + y ** 2)
    z += 1 / np.sqrt(0.01 + (x - 0.3) ** 2 + y ** 2)

    plt.figure()
    cs = plt.contour(x, y, z, levels=[7])

    # Adding labels should invalidate the old style
    _maybe_split_collections(split_collections)

    cs.clabel(manual=[(0.2, 0.1)])

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True)
def test_given_colors_levels_and_extends(split_collections):
    # Remove this line when this test image is regenerated.
    plt.rcParams['pcolormesh.snap'] = False

    _, axs = plt.subplots(2, 4)

    data = np.arange(12).reshape(3, 4)

    colors = ['red', 'yellow', 'pink', 'blue', 'black']
    levels = [2, 4, 8, 10]

    for i, ax in enumerate(axs.flat):
        filled = i % 2 == 0.
        extend = ['neither', 'min', 'max', 'both'][i // 2]

        if filled:
            # If filled, we have 3 colors with no extension,
            # 4 colors with one extension, and 5 colors with both extensions
            first_color = 1 if extend in ['max', 'neither'] else None
            last_color = -1 if extend in ['min', 'neither'] else None
            c = ax.contourf(data, colors=colors[first_color:last_color],
                            levels=levels, extend=extend)
        else:
            # If not filled, we have 4 levels and 4 colors
            c = ax.contour(data, colors=colors[:-1],
                           levels=levels, extend=extend)

        plt.colorbar(c, ax=ax)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_log_locator.svg'], style='mpl20', remove_text=False)
def test_log_locator_levels(split_collections):

    fig, ax = plt.subplots()

    N = 100
    x = np.linspace(-3.0, 3.0, N)
    y = np.linspace(-2.0, 2.0, N)

    X, Y = np.meshgrid(x, y)

    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
    data = Z1 + 50 * Z2

    c = ax.contourf(data, locator=ticker.LogLocator())
    assert_array_almost_equal(c.levels, np.power(10.0, np.arange(-6, 3)))
    cb = fig.colorbar(c, ax=ax)
    assert_array_almost_equal(cb.ax.get_yticks(), c.levels)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_datetime_axis.png'], style='mpl20')
def test_contour_datetime_axis(split_collections):
    fig = plt.figure()
    fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
    base = datetime.datetime(2013, 1, 1)
    x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
    y = np.arange(20)
    z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
    z = z1 * z2
    plt.subplot(221)
    plt.contour(x, y, z)
    plt.subplot(222)
    plt.contourf(x, y, z)
    x = np.repeat(x[np.newaxis], 20, axis=0)
    y = np.repeat(y[:, np.newaxis], 20, axis=1)
    plt.subplot(223)
    plt.contour(x, y, z)
    plt.subplot(224)
    plt.contourf(x, y, z)
    for ax in fig.get_axes():
        for label in ax.get_xticklabels():
            label.set_ha('right')
            label.set_rotation(30)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_test_label_transforms.png'],
                  remove_text=True, style='mpl20', tol=1.1)
def test_labels(split_collections):
    # Adapted from pylab_examples example code: contour_demo.py
    # see issues #2475, #2843, and #2818 for explanation
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
    Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
          (2 * np.pi * 0.5 * 1.5))

    # difference of Gaussians
    Z = 10.0 * (Z2 - Z1)

    fig, ax = plt.subplots(1, 1)
    CS = ax.contour(X, Y, Z)
    disp_units = [(216, 177), (359, 290), (521, 406)]
    data_units = [(-2, .5), (0, -1.5), (2.8, 1)]

    # Adding labels should invalidate the old style
    _maybe_split_collections(split_collections)

    CS.clabel()

    for x, y in data_units:
        CS.add_label_near(x, y, inline=True, transform=None)

    for x, y in disp_units:
        CS.add_label_near(x, y, inline=True, transform=False)

    _maybe_split_collections(split_collections)


def test_label_contour_start():
    # Set up data and figure/axes that result in automatic labelling adding the
    # label to the start of a contour

    _, ax = plt.subplots(dpi=100)
    lats = lons = np.linspace(-np.pi / 2, np.pi / 2, 50)
    lons, lats = np.meshgrid(lons, lats)
    wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons)
    mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2)
    data = wave + mean

    cs = ax.contour(lons, lats, data)

    with mock.patch.object(
            cs, '_split_path_and_get_label_rotation',
            wraps=cs._split_path_and_get_label_rotation) as mocked_splitter:
        # Smoke test that we can add the labels
        cs.clabel(fontsize=9)

    # Verify at least one label was added to the start of a contour.  I.e. the
    # splitting method was called with idx=0 at least once.
    idxs = [cargs[0][1] for cargs in mocked_splitter.call_args_list]
    assert 0 in idxs


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_corner_mask_False.png', 'contour_corner_mask_True.png'],
                  remove_text=True, tol=1.88)
def test_corner_mask(split_collections):
    n = 60
    mask_level = 0.95
    noise_amp = 1.0
    np.random.seed([1])
    x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n))
    z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n)
    mask = np.random.rand(n, n) >= mask_level
    z = np.ma.array(z, mask=mask)

    for corner_mask in [False, True]:
        plt.figure()
        plt.contourf(z, corner_mask=corner_mask)

    _maybe_split_collections(split_collections)


def test_contourf_decreasing_levels():
    # github issue 5477.
    z = [[0.1, 0.3], [0.5, 0.7]]
    plt.figure()
    with pytest.raises(ValueError):
        plt.contourf(z, [1.0, 0.0])


def test_contourf_symmetric_locator():
    # github issue 7271
    z = np.arange(12).reshape((3, 4))
    locator = plt.MaxNLocator(nbins=4, symmetric=True)
    cs = plt.contourf(z, locator=locator)
    assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))


def test_circular_contour_warning():
    # Check that almost circular contours don't throw a warning
    x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4))
    r = np.hypot(x, y)
    plt.figure()
    cs = plt.contour(x, y, r)
    plt.clabel(cs)


@pytest.mark.parametrize("use_clabeltext, contour_zorder, clabel_zorder",
                         [(True, 123, 1234), (False, 123, 1234),
                          (True, 123, None), (False, 123, None)])
def test_clabel_zorder(use_clabeltext, contour_zorder, clabel_zorder):
    x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
    z = np.max(np.dstack([abs(x), abs(y)]), 2)

    fig, (ax1, ax2) = plt.subplots(ncols=2)
    cs = ax1.contour(x, y, z, zorder=contour_zorder)
    cs_filled = ax2.contourf(x, y, z, zorder=contour_zorder)
    clabels1 = cs.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext)
    clabels2 = cs_filled.clabel(zorder=clabel_zorder,
                                use_clabeltext=use_clabeltext)

    if clabel_zorder is None:
        expected_clabel_zorder = 2+contour_zorder
    else:
        expected_clabel_zorder = clabel_zorder

    for clabel in clabels1:
        assert clabel.get_zorder() == expected_clabel_zorder
    for clabel in clabels2:
        assert clabel.get_zorder() == expected_clabel_zorder


def test_clabel_with_large_spacing():
    # When the inline spacing is large relative to the contour, it may cause the
    # entire contour to be removed. In current implementation, one line segment is
    # retained between the identified points.
    # This behavior may be worth reconsidering, but check to be sure we do not produce
    # an invalid path, which results in an error at clabel call time.
    # see gh-27045 for more information
    x = y = np.arange(-3.0, 3.01, 0.05)
    X, Y = np.meshgrid(x, y)
    Z = np.exp(-X**2 - Y**2)

    fig, ax = plt.subplots()
    contourset = ax.contour(X, Y, Z, levels=[0.01, 0.2, .5, .8])
    ax.clabel(contourset, inline_spacing=100)


# tol because ticks happen to fall on pixel boundaries so small
# floating point changes in tick location flip which pixel gets
# the tick.
@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(['contour_log_extension.png'],
                  remove_text=True, style='mpl20',
                  tol=1.444)
def test_contourf_log_extension(split_collections):
    # Remove this line when this test image is regenerated.
    plt.rcParams['pcolormesh.snap'] = False

    # Test that contourf with lognorm is extended correctly
    fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
    fig.subplots_adjust(left=0.05, right=0.95)

    # make data set with large range e.g. between 1e-8 and 1e10
    data_exp = np.linspace(-7.5, 9.5, 1200)
    data = np.power(10, data_exp).reshape(30, 40)
    # make manual levels e.g. between 1e-4 and 1e-6
    levels_exp = np.arange(-4., 7.)
    levels = np.power(10., levels_exp)

    # original data
    c1 = ax1.contourf(data,
                      norm=LogNorm(vmin=data.min(), vmax=data.max()))
    # just show data in levels
    c2 = ax2.contourf(data, levels=levels,
                      norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
                      extend='neither')
    # extend data from levels
    c3 = ax3.contourf(data, levels=levels,
                      norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
                      extend='both')
    cb = plt.colorbar(c1, ax=ax1)
    assert cb.ax.get_ylim() == (1e-8, 1e10)
    cb = plt.colorbar(c2, ax=ax2)
    assert_array_almost_equal_nulp(cb.ax.get_ylim(), np.array((1e-4, 1e6)))
    cb = plt.colorbar(c3, ax=ax3)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(
    ['contour_addlines.png'], remove_text=True, style='mpl20',
    tol=0.15 if platform.machine() in ('aarch64', 'ppc64le', 's390x')
        else 0.03)
# tolerance is because image changed minutely when tick finding on
# colorbars was cleaned up...
def test_contour_addlines(split_collections):
    # Remove this line when this test image is regenerated.
    plt.rcParams['pcolormesh.snap'] = False

    fig, ax = plt.subplots()
    np.random.seed(19680812)
    X = np.random.rand(10, 10)*10000
    pcm = ax.pcolormesh(X)
    # add 1000 to make colors visible...
    cont = ax.contour(X+1000)
    cb = fig.colorbar(pcm)
    cb.add_lines(cont)
    assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_uneven'],
                  extensions=['png'], remove_text=True, style='mpl20')
def test_contour_uneven(split_collections):
    # Remove this line when this test image is regenerated.
    plt.rcParams['pcolormesh.snap'] = False

    z = np.arange(24).reshape(4, 6)
    fig, axs = plt.subplots(1, 2)
    ax = axs[0]
    cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
    fig.colorbar(cs, ax=ax, spacing='proportional')
    ax = axs[1]
    cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
    fig.colorbar(cs, ax=ax, spacing='uniform')

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize(
    "rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected", [
        (1.23, None, None, 1.23),
        (1.23, 4.24, None, 4.24),
        (1.23, 4.24, 5.02, 5.02)
        ])
def test_contour_linewidth(
        rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected):

    with rc_context(rc={"lines.linewidth": rc_lines_linewidth,
                        "contour.linewidth": rc_contour_linewidth}):
        fig, ax = plt.subplots()
        X = np.arange(4*3).reshape(4, 3)
        cs = ax.contour(X, linewidths=call_linewidths)
        assert cs.get_linewidths()[0] == expected
        with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
            assert cs.tlinewidths[0][0] == expected


@pytest.mark.backend("pdf")
def test_label_nonagg():
    # This should not crash even if the canvas doesn't have a get_renderer().
    plt.clabel(plt.contour([[1, 2], [3, 4]]))


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_closed_line_loop'],
                  extensions=['png'], remove_text=True)
def test_contour_closed_line_loop(split_collections):
    # github issue 19568.
    z = [[0, 0, 0], [0, 2, 0], [0, 0, 0], [2, 1, 2]]

    fig, ax = plt.subplots(figsize=(2, 2))
    ax.contour(z, [0.5], linewidths=[20], alpha=0.7)
    ax.set_xlim(-0.1, 2.1)
    ax.set_ylim(-0.1, 3.1)

    _maybe_split_collections(split_collections)


def test_quadcontourset_reuse():
    # If QuadContourSet returned from one contour(f) call is passed as first
    # argument to another the underlying C++ contour generator will be reused.
    x, y = np.meshgrid([0.0, 1.0], [0.0, 1.0])
    z = x + y
    fig, ax = plt.subplots()
    qcs1 = ax.contourf(x, y, z)
    qcs2 = ax.contour(x, y, z)
    assert qcs2._contour_generator != qcs1._contour_generator
    qcs3 = ax.contour(qcs1, z)
    assert qcs3._contour_generator == qcs1._contour_generator


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_manual'],
                  extensions=['png'], remove_text=True, tol=0.89)
def test_contour_manual(split_collections):
    # Manually specifying contour lines/polygons to plot.
    from matplotlib.contour import ContourSet

    fig, ax = plt.subplots(figsize=(4, 4))
    cmap = 'viridis'

    # Segments only (no 'kind' codes).
    lines0 = [[[2, 0], [1, 2], [1, 3]]]  # Single line.
    lines1 = [[[3, 0], [3, 2]], [[3, 3], [3, 4]]]  # Two lines.
    filled01 = [[[0, 0], [0, 4], [1, 3], [1, 2], [2, 0]]]
    filled12 = [[[2, 0], [3, 0], [3, 2], [1, 3], [1, 2]],  # Two polygons.
                [[1, 4], [3, 4], [3, 3]]]
    ContourSet(ax, [0, 1, 2], [filled01, filled12], filled=True, cmap=cmap)
    ContourSet(ax, [1, 2], [lines0, lines1], linewidths=3, colors=['r', 'k'])

    # Segments and kind codes (1 = MOVETO, 2 = LINETO, 79 = CLOSEPOLY).
    segs = [[[4, 0], [7, 0], [7, 3], [4, 3], [4, 0],
             [5, 1], [5, 2], [6, 2], [6, 1], [5, 1]]]
    kinds = [[1, 2, 2, 2, 79, 1, 2, 2, 2, 79]]  # Polygon containing hole.
    ContourSet(ax, [2, 3], [segs], [kinds], filled=True, cmap=cmap)
    ContourSet(ax, [2], [segs], [kinds], colors='k', linewidths=3)

    _maybe_split_collections(split_collections)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_line_start_on_corner_edge'],
                  extensions=['png'], remove_text=True)
def test_contour_line_start_on_corner_edge(split_collections):
    fig, ax = plt.subplots(figsize=(6, 5))

    x, y = np.meshgrid([0, 1, 2, 3, 4], [0, 1, 2])
    z = 1.2 - (x - 2)**2 + (y - 1)**2
    mask = np.zeros_like(z, dtype=bool)
    mask[1, 1] = mask[1, 3] = True
    z = np.ma.array(z, mask=mask)

    filled = ax.contourf(x, y, z, corner_mask=True)
    cbar = fig.colorbar(filled)
    lines = ax.contour(x, y, z, corner_mask=True, colors='k')
    cbar.add_lines(lines)

    _maybe_split_collections(split_collections)


def test_find_nearest_contour():
    xy = np.indices((15, 15))
    img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
    cs = plt.contour(img, 10)

    nearest_contour = cs.find_nearest_contour(1, 1, pixel=False)
    expected_nearest = (1, 0, 33, 1.965966, 1.965966, 1.866183)
    assert_array_almost_equal(nearest_contour, expected_nearest)

    nearest_contour = cs.find_nearest_contour(8, 1, pixel=False)
    expected_nearest = (1, 0, 5, 7.550173, 1.587542, 0.547550)
    assert_array_almost_equal(nearest_contour, expected_nearest)

    nearest_contour = cs.find_nearest_contour(2, 5, pixel=False)
    expected_nearest = (3, 0, 21, 1.884384, 5.023335, 0.013911)
    assert_array_almost_equal(nearest_contour, expected_nearest)

    nearest_contour = cs.find_nearest_contour(2, 5, indices=(5, 7), pixel=False)
    expected_nearest = (5, 0, 16, 2.628202, 5.0, 0.394638)
    assert_array_almost_equal(nearest_contour, expected_nearest)


def test_find_nearest_contour_no_filled():
    xy = np.indices((15, 15))
    img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
    cs = plt.contourf(img, 10)

    with pytest.raises(ValueError, match="Method does not support filled contours"):
        cs.find_nearest_contour(1, 1, pixel=False)

    with pytest.raises(ValueError, match="Method does not support filled contours"):
        cs.find_nearest_contour(1, 10, indices=(5, 7), pixel=False)

    with pytest.raises(ValueError, match="Method does not support filled contours"):
        cs.find_nearest_contour(2, 5, indices=(2, 7), pixel=True)


@mpl.style.context("default")
def test_contour_autolabel_beyond_powerlimits():
    ax = plt.figure().add_subplot()
    cs = plt.contour(np.geomspace(1e-6, 1e-4, 100).reshape(10, 10),
                     levels=[.25e-5, 1e-5, 4e-5])
    ax.clabel(cs)
    # Currently, the exponent is missing, but that may be fixed in the future.
    assert {text.get_text() for text in ax.texts} == {"0.25", "1.00", "4.00"}


def test_contourf_legend_elements():
    from matplotlib.patches import Rectangle
    x = np.arange(1, 10)
    y = x.reshape(-1, 1)
    h = x * y

    cs = plt.contourf(h, levels=[10, 30, 50],
                      colors=['#FFFF00', '#FF00FF', '#00FFFF'],
                      extend='both')
    cs.cmap.set_over('red')
    cs.cmap.set_under('blue')
    cs.changed()
    artists, labels = cs.legend_elements()
    assert labels == ['$x \\leq -1e+250s$',
                      '$10.0 < x \\leq 30.0$',
                      '$30.0 < x \\leq 50.0$',
                      '$x > 1e+250s$']
    expected_colors = ('blue', '#FFFF00', '#FF00FF', 'red')
    assert all(isinstance(a, Rectangle) for a in artists)
    assert all(same_color(a.get_facecolor(), c)
               for a, c in zip(artists, expected_colors))


def test_contour_legend_elements():
    x = np.arange(1, 10)
    y = x.reshape(-1, 1)
    h = x * y

    colors = ['blue', '#00FF00', 'red']
    cs = plt.contour(h, levels=[10, 30, 50],
                     colors=colors,
                     extend='both')
    artists, labels = cs.legend_elements()
    assert labels == ['$x = 10.0$', '$x = 30.0$', '$x = 50.0$']
    assert all(isinstance(a, mpl.lines.Line2D) for a in artists)
    assert all(same_color(a.get_color(), c)
               for a, c in zip(artists, colors))


@pytest.mark.parametrize(
    "algorithm, klass",
    [('mpl2005', contourpy.Mpl2005ContourGenerator),
     ('mpl2014', contourpy.Mpl2014ContourGenerator),
     ('serial', contourpy.SerialContourGenerator),
     ('threaded', contourpy.ThreadedContourGenerator),
     ('invalid', None)])
def test_algorithm_name(algorithm, klass):
    z = np.array([[1.0, 2.0], [3.0, 4.0]])
    if klass is not None:
        cs = plt.contourf(z, algorithm=algorithm)
        assert isinstance(cs._contour_generator, klass)
    else:
        with pytest.raises(ValueError):
            plt.contourf(z, algorithm=algorithm)


@pytest.mark.parametrize(
    "algorithm", ['mpl2005', 'mpl2014', 'serial', 'threaded'])
def test_algorithm_supports_corner_mask(algorithm):
    z = np.array([[1.0, 2.0], [3.0, 4.0]])

    # All algorithms support corner_mask=False
    plt.contourf(z, algorithm=algorithm, corner_mask=False)

    # Only some algorithms support corner_mask=True
    if algorithm != 'mpl2005':
        plt.contourf(z, algorithm=algorithm, corner_mask=True)
    else:
        with pytest.raises(ValueError):
            plt.contourf(z, algorithm=algorithm, corner_mask=True)


@pytest.mark.parametrize("split_collections", [False, True])
@image_comparison(baseline_images=['contour_all_algorithms'],
                  extensions=['png'], remove_text=True, tol=0.06)
def test_all_algorithms(split_collections):
    algorithms = ['mpl2005', 'mpl2014', 'serial', 'threaded']

    rng = np.random.default_rng(2981)
    x, y = np.meshgrid(np.linspace(0.0, 1.0, 10), np.linspace(0.0, 1.0, 6))
    z = np.sin(15*x)*np.cos(10*y) + rng.normal(scale=0.5, size=(6, 10))
    mask = np.zeros_like(z, dtype=bool)
    mask[3, 7] = True
    z = np.ma.array(z, mask=mask)

    _, axs = plt.subplots(2, 2)
    for ax, algorithm in zip(axs.ravel(), algorithms):
        ax.contourf(x, y, z, algorithm=algorithm)
        ax.contour(x, y, z, algorithm=algorithm, colors='k')
        ax.set_title(algorithm)

    _maybe_split_collections(split_collections)


def test_subfigure_clabel():
    # Smoke test for gh#23173
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-(X**2) - Y**2)
    Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2)
    Z = (Z1 - Z2) * 2

    fig = plt.figure()
    figs = fig.subfigures(nrows=1, ncols=2)

    for f in figs:
        ax = f.subplots()
        CS = ax.contour(X, Y, Z)
        ax.clabel(CS, inline=True, fontsize=10)
        ax.set_title("Simplest default with labels")


@pytest.mark.parametrize(
    "style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_linestyles(style):
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    # Positive contour defaults to solid
    fig1, ax1 = plt.subplots()
    CS1 = ax1.contour(X, Y, Z, 6, colors='k')
    ax1.clabel(CS1, fontsize=9, inline=True)
    ax1.set_title('Single color - positive contours solid (default)')
    assert CS1.linestyles is None  # default

    # Change linestyles using linestyles kwarg
    fig2, ax2 = plt.subplots()
    CS2 = ax2.contour(X, Y, Z, 6, colors='k', linestyles=style)
    ax2.clabel(CS2, fontsize=9, inline=True)
    ax2.set_title(f'Single color - positive contours {style}')
    assert CS2.linestyles == style

    # Ensure linestyles do not change when negative_linestyles is defined
    fig3, ax3 = plt.subplots()
    CS3 = ax3.contour(X, Y, Z, 6, colors='k', linestyles=style,
                      negative_linestyles='dashdot')
    ax3.clabel(CS3, fontsize=9, inline=True)
    ax3.set_title(f'Single color - positive contours {style}')
    assert CS3.linestyles == style


@pytest.mark.parametrize(
    "style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_negative_linestyles(style):
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    # Negative contour defaults to dashed
    fig1, ax1 = plt.subplots()
    CS1 = ax1.contour(X, Y, Z, 6, colors='k')
    ax1.clabel(CS1, fontsize=9, inline=True)
    ax1.set_title('Single color - negative contours dashed (default)')
    assert CS1.negative_linestyles == 'dashed'  # default

    # Change negative_linestyles using rcParams
    plt.rcParams['contour.negative_linestyle'] = style
    fig2, ax2 = plt.subplots()
    CS2 = ax2.contour(X, Y, Z, 6, colors='k')
    ax2.clabel(CS2, fontsize=9, inline=True)
    ax2.set_title(f'Single color - negative contours {style}'
                   '(using rcParams)')
    assert CS2.negative_linestyles == style

    # Change negative_linestyles using negative_linestyles kwarg
    fig3, ax3 = plt.subplots()
    CS3 = ax3.contour(X, Y, Z, 6, colors='k', negative_linestyles=style)
    ax3.clabel(CS3, fontsize=9, inline=True)
    ax3.set_title(f'Single color - negative contours {style}')
    assert CS3.negative_linestyles == style

    # Ensure negative_linestyles do not change when linestyles is defined
    fig4, ax4 = plt.subplots()
    CS4 = ax4.contour(X, Y, Z, 6, colors='k', linestyles='dashdot',
                      negative_linestyles=style)
    ax4.clabel(CS4, fontsize=9, inline=True)
    ax4.set_title(f'Single color - negative contours {style}')
    assert CS4.negative_linestyles == style


def test_contour_remove():
    ax = plt.figure().add_subplot()
    orig_children = ax.get_children()
    cs = ax.contour(np.arange(16).reshape((4, 4)))
    cs.clabel()
    assert ax.get_children() != orig_children
    cs.remove()
    assert ax.get_children() == orig_children


def test_contour_no_args():
    fig, ax = plt.subplots()
    data = [[0, 1], [1, 0]]
    with pytest.raises(TypeError, match=r"contour\(\) takes from 1 to 4"):
        ax.contour(Z=data)


def test_contour_clip_path():
    fig, ax = plt.subplots()
    data = [[0, 1], [1, 0]]
    circle = mpatches.Circle([0.5, 0.5], 0.5, transform=ax.transAxes)
    cs = ax.contour(data, clip_path=circle)
    assert cs.get_clip_path() is not None


def test_bool_autolevel():
    x, y = np.random.rand(2, 9)
    z = (np.arange(9) % 2).reshape((3, 3)).astype(bool)
    m = [[False, False, False], [False, True, False], [False, False, False]]
    assert plt.contour(z.tolist()).levels.tolist() == [.5]
    assert plt.contour(z).levels.tolist() == [.5]
    assert plt.contour(np.ma.array(z, mask=m)).levels.tolist() == [.5]
    assert plt.contourf(z.tolist()).levels.tolist() == [0, .5, 1]
    assert plt.contourf(z).levels.tolist() == [0, .5, 1]
    assert plt.contourf(np.ma.array(z, mask=m)).levels.tolist() == [0, .5, 1]
    z = z.ravel()
    assert plt.tricontour(x, y, z.tolist()).levels.tolist() == [.5]
    assert plt.tricontour(x, y, z).levels.tolist() == [.5]
    assert plt.tricontourf(x, y, z.tolist()).levels.tolist() == [0, .5, 1]
    assert plt.tricontourf(x, y, z).levels.tolist() == [0, .5, 1]


def test_all_nan():
    x = np.array([[np.nan, np.nan], [np.nan, np.nan]])
    assert_array_almost_equal(plt.contour(x).levels,
                              [-1e-13, -7.5e-14, -5e-14, -2.4e-14, 0.0,
                                2.4e-14, 5e-14, 7.5e-14, 1e-13])


def test_allsegs_allkinds():
    x, y = np.meshgrid(np.arange(0, 10, 2), np.arange(0, 10, 2))
    z = np.sin(x) * np.cos(y)

    cs = plt.contour(x, y, z, levels=[0, 0.5])

    # Expect two levels, the first with 5 segments and the second with 4.
    for result in [cs.allsegs, cs.allkinds]:
        assert len(result) == 2
        assert len(result[0]) == 5
        assert len(result[1]) == 4


def test_deprecated_apis():
    cs = plt.contour(np.arange(16).reshape((4, 4)))
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="collections"):
        colls = cs.collections
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tcolors"):
        assert_array_equal(cs.tcolors, [c.get_edgecolor() for c in colls])
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
        assert cs.tlinewidths == [c.get_linewidth() for c in colls]
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
        assert cs.antialiased
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
        cs.antialiased = False
    with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
        assert not cs.antialiased