File size: 44,833 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
from datetime import datetime
import io
import itertools
import re
from types import SimpleNamespace

import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
import pytest

import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.collections as mcollections
import matplotlib.colors as mcolors
import matplotlib.path as mpath
import matplotlib.transforms as mtransforms
from matplotlib.collections import (Collection, LineCollection,
                                    EventCollection, PolyCollection)
from matplotlib.testing.decorators import check_figures_equal, image_comparison


@pytest.fixture(params=["pcolormesh", "pcolor"])
def pcfunc(request):
    return request.param


def generate_EventCollection_plot():
    """Generate the initial collection and plot it."""
    positions = np.array([0., 1., 2., 3., 5., 8., 13., 21.])
    extra_positions = np.array([34., 55., 89.])
    orientation = 'horizontal'
    lineoffset = 1
    linelength = .5
    linewidth = 2
    color = [1, 0, 0, 1]
    linestyle = 'solid'
    antialiased = True

    coll = EventCollection(positions,
                           orientation=orientation,
                           lineoffset=lineoffset,
                           linelength=linelength,
                           linewidth=linewidth,
                           color=color,
                           linestyle=linestyle,
                           antialiased=antialiased
                           )

    fig, ax = plt.subplots()
    ax.add_collection(coll)
    ax.set_title('EventCollection: default')
    props = {'positions': positions,
             'extra_positions': extra_positions,
             'orientation': orientation,
             'lineoffset': lineoffset,
             'linelength': linelength,
             'linewidth': linewidth,
             'color': color,
             'linestyle': linestyle,
             'antialiased': antialiased
             }
    ax.set_xlim(-1, 22)
    ax.set_ylim(0, 2)
    return ax, coll, props


@image_comparison(['EventCollection_plot__default'])
def test__EventCollection__get_props():
    _, coll, props = generate_EventCollection_plot()
    # check that the default segments have the correct coordinates
    check_segments(coll,
                   props['positions'],
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    # check that the default positions match the input positions
    np.testing.assert_array_equal(props['positions'], coll.get_positions())
    # check that the default orientation matches the input orientation
    assert props['orientation'] == coll.get_orientation()
    # check that the default orientation matches the input orientation
    assert coll.is_horizontal()
    # check that the default linelength matches the input linelength
    assert props['linelength'] == coll.get_linelength()
    # check that the default lineoffset matches the input lineoffset
    assert props['lineoffset'] == coll.get_lineoffset()
    # check that the default linestyle matches the input linestyle
    assert coll.get_linestyle() == [(0, None)]
    # check that the default color matches the input color
    for color in [coll.get_color(), *coll.get_colors()]:
        np.testing.assert_array_equal(color, props['color'])


@image_comparison(['EventCollection_plot__set_positions'])
def test__EventCollection__set_positions():
    splt, coll, props = generate_EventCollection_plot()
    new_positions = np.hstack([props['positions'], props['extra_positions']])
    coll.set_positions(new_positions)
    np.testing.assert_array_equal(new_positions, coll.get_positions())
    check_segments(coll, new_positions,
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: set_positions')
    splt.set_xlim(-1, 90)


@image_comparison(['EventCollection_plot__add_positions'])
def test__EventCollection__add_positions():
    splt, coll, props = generate_EventCollection_plot()
    new_positions = np.hstack([props['positions'],
                               props['extra_positions'][0]])
    coll.switch_orientation()  # Test adding in the vertical orientation, too.
    coll.add_positions(props['extra_positions'][0])
    coll.switch_orientation()
    np.testing.assert_array_equal(new_positions, coll.get_positions())
    check_segments(coll,
                   new_positions,
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: add_positions')
    splt.set_xlim(-1, 35)


@image_comparison(['EventCollection_plot__append_positions'])
def test__EventCollection__append_positions():
    splt, coll, props = generate_EventCollection_plot()
    new_positions = np.hstack([props['positions'],
                               props['extra_positions'][2]])
    coll.append_positions(props['extra_positions'][2])
    np.testing.assert_array_equal(new_positions, coll.get_positions())
    check_segments(coll,
                   new_positions,
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: append_positions')
    splt.set_xlim(-1, 90)


@image_comparison(['EventCollection_plot__extend_positions'])
def test__EventCollection__extend_positions():
    splt, coll, props = generate_EventCollection_plot()
    new_positions = np.hstack([props['positions'],
                               props['extra_positions'][1:]])
    coll.extend_positions(props['extra_positions'][1:])
    np.testing.assert_array_equal(new_positions, coll.get_positions())
    check_segments(coll,
                   new_positions,
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: extend_positions')
    splt.set_xlim(-1, 90)


@image_comparison(['EventCollection_plot__switch_orientation'])
def test__EventCollection__switch_orientation():
    splt, coll, props = generate_EventCollection_plot()
    new_orientation = 'vertical'
    coll.switch_orientation()
    assert new_orientation == coll.get_orientation()
    assert not coll.is_horizontal()
    new_positions = coll.get_positions()
    check_segments(coll,
                   new_positions,
                   props['linelength'],
                   props['lineoffset'], new_orientation)
    splt.set_title('EventCollection: switch_orientation')
    splt.set_ylim(-1, 22)
    splt.set_xlim(0, 2)


@image_comparison(['EventCollection_plot__switch_orientation__2x'])
def test__EventCollection__switch_orientation_2x():
    """
    Check that calling switch_orientation twice sets the orientation back to
    the default.
    """
    splt, coll, props = generate_EventCollection_plot()
    coll.switch_orientation()
    coll.switch_orientation()
    new_positions = coll.get_positions()
    assert props['orientation'] == coll.get_orientation()
    assert coll.is_horizontal()
    np.testing.assert_array_equal(props['positions'], new_positions)
    check_segments(coll,
                   new_positions,
                   props['linelength'],
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: switch_orientation 2x')


@image_comparison(['EventCollection_plot__set_orientation'])
def test__EventCollection__set_orientation():
    splt, coll, props = generate_EventCollection_plot()
    new_orientation = 'vertical'
    coll.set_orientation(new_orientation)
    assert new_orientation == coll.get_orientation()
    assert not coll.is_horizontal()
    check_segments(coll,
                   props['positions'],
                   props['linelength'],
                   props['lineoffset'],
                   new_orientation)
    splt.set_title('EventCollection: set_orientation')
    splt.set_ylim(-1, 22)
    splt.set_xlim(0, 2)


@image_comparison(['EventCollection_plot__set_linelength'])
def test__EventCollection__set_linelength():
    splt, coll, props = generate_EventCollection_plot()
    new_linelength = 15
    coll.set_linelength(new_linelength)
    assert new_linelength == coll.get_linelength()
    check_segments(coll,
                   props['positions'],
                   new_linelength,
                   props['lineoffset'],
                   props['orientation'])
    splt.set_title('EventCollection: set_linelength')
    splt.set_ylim(-20, 20)


@image_comparison(['EventCollection_plot__set_lineoffset'])
def test__EventCollection__set_lineoffset():
    splt, coll, props = generate_EventCollection_plot()
    new_lineoffset = -5.
    coll.set_lineoffset(new_lineoffset)
    assert new_lineoffset == coll.get_lineoffset()
    check_segments(coll,
                   props['positions'],
                   props['linelength'],
                   new_lineoffset,
                   props['orientation'])
    splt.set_title('EventCollection: set_lineoffset')
    splt.set_ylim(-6, -4)


@image_comparison([
    'EventCollection_plot__set_linestyle',
    'EventCollection_plot__set_linestyle',
    'EventCollection_plot__set_linewidth',
])
def test__EventCollection__set_prop():
    for prop, value, expected in [
            ('linestyle', 'dashed', [(0, (6.0, 6.0))]),
            ('linestyle', (0, (6., 6.)), [(0, (6.0, 6.0))]),
            ('linewidth', 5, 5),
    ]:
        splt, coll, _ = generate_EventCollection_plot()
        coll.set(**{prop: value})
        assert plt.getp(coll, prop) == expected
        splt.set_title(f'EventCollection: set_{prop}')


@image_comparison(['EventCollection_plot__set_color'])
def test__EventCollection__set_color():
    splt, coll, _ = generate_EventCollection_plot()
    new_color = np.array([0, 1, 1, 1])
    coll.set_color(new_color)
    for color in [coll.get_color(), *coll.get_colors()]:
        np.testing.assert_array_equal(color, new_color)
    splt.set_title('EventCollection: set_color')


def check_segments(coll, positions, linelength, lineoffset, orientation):
    """
    Test helper checking that all values in the segment are correct, given a
    particular set of inputs.
    """
    segments = coll.get_segments()
    if (orientation.lower() == 'horizontal'
            or orientation.lower() == 'none' or orientation is None):
        # if horizontal, the position in is in the y-axis
        pos1 = 1
        pos2 = 0
    elif orientation.lower() == 'vertical':
        # if vertical, the position in is in the x-axis
        pos1 = 0
        pos2 = 1
    else:
        raise ValueError("orientation must be 'horizontal' or 'vertical'")

    # test to make sure each segment is correct
    for i, segment in enumerate(segments):
        assert segment[0, pos1] == lineoffset + linelength / 2
        assert segment[1, pos1] == lineoffset - linelength / 2
        assert segment[0, pos2] == positions[i]
        assert segment[1, pos2] == positions[i]


def test_null_collection_datalim():
    col = mcollections.PathCollection([])
    col_data_lim = col.get_datalim(mtransforms.IdentityTransform())
    assert_array_equal(col_data_lim.get_points(),
                       mtransforms.Bbox.null().get_points())


def test_no_offsets_datalim():
    # A collection with no offsets and a non transData
    # transform should return a null bbox
    ax = plt.axes()
    coll = mcollections.PathCollection([mpath.Path([(0, 0), (1, 0)])])
    ax.add_collection(coll)
    coll_data_lim = coll.get_datalim(mtransforms.IdentityTransform())
    assert_array_equal(coll_data_lim.get_points(),
                       mtransforms.Bbox.null().get_points())


def test_add_collection():
    # Test if data limits are unchanged by adding an empty collection.
    # GitHub issue #1490, pull #1497.
    plt.figure()
    ax = plt.axes()
    ax.scatter([0, 1], [0, 1])
    bounds = ax.dataLim.bounds
    ax.scatter([], [])
    assert ax.dataLim.bounds == bounds


@mpl.style.context('mpl20')
@check_figures_equal(extensions=['png'])
def test_collection_log_datalim(fig_test, fig_ref):
    # Data limits should respect the minimum x/y when using log scale.
    x_vals = [4.38462e-6, 5.54929e-6, 7.02332e-6, 8.88889e-6, 1.12500e-5,
              1.42383e-5, 1.80203e-5, 2.28070e-5, 2.88651e-5, 3.65324e-5,
              4.62363e-5, 5.85178e-5, 7.40616e-5, 9.37342e-5, 1.18632e-4]
    y_vals = [0.0, 0.1, 0.182, 0.332, 0.604, 1.1, 2.0, 3.64, 6.64, 12.1, 22.0,
              39.6, 71.3]

    x, y = np.meshgrid(x_vals, y_vals)
    x = x.flatten()
    y = y.flatten()

    ax_test = fig_test.subplots()
    ax_test.set_xscale('log')
    ax_test.set_yscale('log')
    ax_test.margins = 0
    ax_test.scatter(x, y)

    ax_ref = fig_ref.subplots()
    ax_ref.set_xscale('log')
    ax_ref.set_yscale('log')
    ax_ref.plot(x, y, marker="o", ls="")


def test_quiver_limits():
    ax = plt.axes()
    x, y = np.arange(8), np.arange(10)
    u = v = np.linspace(0, 10, 80).reshape(10, 8)
    q = plt.quiver(x, y, u, v)
    assert q.get_datalim(ax.transData).bounds == (0., 0., 7., 9.)

    plt.figure()
    ax = plt.axes()
    x = np.linspace(-5, 10, 20)
    y = np.linspace(-2, 4, 10)
    y, x = np.meshgrid(y, x)
    trans = mtransforms.Affine2D().translate(25, 32) + ax.transData
    plt.quiver(x, y, np.sin(x), np.cos(y), transform=trans)
    assert ax.dataLim.bounds == (20.0, 30.0, 15.0, 6.0)


def test_barb_limits():
    ax = plt.axes()
    x = np.linspace(-5, 10, 20)
    y = np.linspace(-2, 4, 10)
    y, x = np.meshgrid(y, x)
    trans = mtransforms.Affine2D().translate(25, 32) + ax.transData
    plt.barbs(x, y, np.sin(x), np.cos(y), transform=trans)
    # The calculated bounds are approximately the bounds of the original data,
    # this is because the entire path is taken into account when updating the
    # datalim.
    assert_array_almost_equal(ax.dataLim.bounds, (20, 30, 15, 6),
                              decimal=1)


@image_comparison(['EllipseCollection_test_image.png'], remove_text=True)
def test_EllipseCollection():
    # Test basic functionality
    fig, ax = plt.subplots()
    x = np.arange(4)
    y = np.arange(3)
    X, Y = np.meshgrid(x, y)
    XY = np.vstack((X.ravel(), Y.ravel())).T

    ww = X / x[-1]
    hh = Y / y[-1]
    aa = np.ones_like(ww) * 20  # first axis is 20 degrees CCW from x axis

    ec = mcollections.EllipseCollection(
        ww, hh, aa, units='x', offsets=XY, offset_transform=ax.transData,
        facecolors='none')
    ax.add_collection(ec)
    ax.autoscale_view()


@image_comparison(['polycollection_close.png'], remove_text=True, style='mpl20')
def test_polycollection_close():
    from mpl_toolkits.mplot3d import Axes3D  # type: ignore

    vertsQuad = [
        [[0., 0.], [0., 1.], [1., 1.], [1., 0.]],
        [[0., 1.], [2., 3.], [2., 2.], [1., 1.]],
        [[2., 2.], [2., 3.], [4., 1.], [3., 1.]],
        [[3., 0.], [3., 1.], [4., 1.], [4., 0.]]]

    fig = plt.figure()
    ax = fig.add_axes(Axes3D(fig))

    colors = ['r', 'g', 'b', 'y', 'k']
    zpos = list(range(5))

    poly = mcollections.PolyCollection(
        vertsQuad * len(zpos), linewidth=0.25)
    poly.set_alpha(0.7)

    # need to have a z-value for *each* polygon = element!
    zs = []
    cs = []
    for z, c in zip(zpos, colors):
        zs.extend([z] * len(vertsQuad))
        cs.extend([c] * len(vertsQuad))

    poly.set_color(cs)

    ax.add_collection3d(poly, zs=zs, zdir='y')

    # axis limit settings:
    ax.set_xlim3d(0, 4)
    ax.set_zlim3d(0, 3)
    ax.set_ylim3d(0, 4)


@image_comparison(['regularpolycollection_rotate.png'], remove_text=True)
def test_regularpolycollection_rotate():
    xx, yy = np.mgrid[:10, :10]
    xy_points = np.transpose([xx.flatten(), yy.flatten()])
    rotations = np.linspace(0, 2*np.pi, len(xy_points))

    fig, ax = plt.subplots()
    for xy, alpha in zip(xy_points, rotations):
        col = mcollections.RegularPolyCollection(
            4, sizes=(100,), rotation=alpha,
            offsets=[xy], offset_transform=ax.transData)
        ax.add_collection(col, autolim=True)
    ax.autoscale_view()


@image_comparison(['regularpolycollection_scale.png'], remove_text=True)
def test_regularpolycollection_scale():
    # See issue #3860

    class SquareCollection(mcollections.RegularPolyCollection):
        def __init__(self, **kwargs):
            super().__init__(4, rotation=np.pi/4., **kwargs)

        def get_transform(self):
            """Return transform scaling circle areas to data space."""
            ax = self.axes

            pts2pixels = 72.0 / ax.figure.dpi

            scale_x = pts2pixels * ax.bbox.width / ax.viewLim.width
            scale_y = pts2pixels * ax.bbox.height / ax.viewLim.height
            return mtransforms.Affine2D().scale(scale_x, scale_y)

    fig, ax = plt.subplots()

    xy = [(0, 0)]
    # Unit square has a half-diagonal of `1/sqrt(2)`, so `pi * r**2` equals...
    circle_areas = [np.pi / 2]
    squares = SquareCollection(
        sizes=circle_areas, offsets=xy, offset_transform=ax.transData)
    ax.add_collection(squares, autolim=True)
    ax.axis([-1, 1, -1, 1])


def test_picking():
    fig, ax = plt.subplots()
    col = ax.scatter([0], [0], [1000], picker=True)
    fig.savefig(io.BytesIO(), dpi=fig.dpi)
    mouse_event = SimpleNamespace(x=325, y=240)
    found, indices = col.contains(mouse_event)
    assert found
    assert_array_equal(indices['ind'], [0])


def test_quadmesh_contains():
    x = np.arange(4)
    X = x[:, None] * x[None, :]

    fig, ax = plt.subplots()
    mesh = ax.pcolormesh(X)
    fig.draw_without_rendering()
    xdata, ydata = 0.5, 0.5
    x, y = mesh.get_transform().transform((xdata, ydata))
    mouse_event = SimpleNamespace(xdata=xdata, ydata=ydata, x=x, y=y)
    found, indices = mesh.contains(mouse_event)
    assert found
    assert_array_equal(indices['ind'], [0])

    xdata, ydata = 1.5, 1.5
    x, y = mesh.get_transform().transform((xdata, ydata))
    mouse_event = SimpleNamespace(xdata=xdata, ydata=ydata, x=x, y=y)
    found, indices = mesh.contains(mouse_event)
    assert found
    assert_array_equal(indices['ind'], [5])


def test_quadmesh_contains_concave():
    # Test a concave polygon, V-like shape
    x = [[0, -1], [1, 0]]
    y = [[0, 1], [1, -1]]
    fig, ax = plt.subplots()
    mesh = ax.pcolormesh(x, y, [[0]])
    fig.draw_without_rendering()
    # xdata, ydata, expected
    points = [(-0.5, 0.25, True),  # left wing
              (0, 0.25, False),  # between the two wings
              (0.5, 0.25, True),  # right wing
              (0, -0.25, True),  # main body
              ]
    for point in points:
        xdata, ydata, expected = point
        x, y = mesh.get_transform().transform((xdata, ydata))
        mouse_event = SimpleNamespace(xdata=xdata, ydata=ydata, x=x, y=y)
        found, indices = mesh.contains(mouse_event)
        assert found is expected


def test_quadmesh_cursor_data():
    x = np.arange(4)
    X = x[:, None] * x[None, :]

    fig, ax = plt.subplots()
    mesh = ax.pcolormesh(X)
    # Empty array data
    mesh._A = None
    fig.draw_without_rendering()
    xdata, ydata = 0.5, 0.5
    x, y = mesh.get_transform().transform((xdata, ydata))
    mouse_event = SimpleNamespace(xdata=xdata, ydata=ydata, x=x, y=y)
    # Empty collection should return None
    assert mesh.get_cursor_data(mouse_event) is None

    # Now test adding the array data, to make sure we do get a value
    mesh.set_array(np.ones(X.shape))
    assert_array_equal(mesh.get_cursor_data(mouse_event), [1])


def test_quadmesh_cursor_data_multiple_points():
    x = [1, 2, 1, 2]
    fig, ax = plt.subplots()
    mesh = ax.pcolormesh(x, x, np.ones((3, 3)))
    fig.draw_without_rendering()
    xdata, ydata = 1.5, 1.5
    x, y = mesh.get_transform().transform((xdata, ydata))
    mouse_event = SimpleNamespace(xdata=xdata, ydata=ydata, x=x, y=y)
    # All quads are covering the same square
    assert_array_equal(mesh.get_cursor_data(mouse_event), np.ones(9))


def test_linestyle_single_dashes():
    plt.scatter([0, 1, 2], [0, 1, 2], linestyle=(0., [2., 2.]))
    plt.draw()


@image_comparison(['size_in_xy.png'], remove_text=True)
def test_size_in_xy():
    fig, ax = plt.subplots()

    widths, heights, angles = (10, 10), 10, 0
    widths = 10, 10
    coords = [(10, 10), (15, 15)]
    e = mcollections.EllipseCollection(
        widths, heights, angles, units='xy',
        offsets=coords, offset_transform=ax.transData)

    ax.add_collection(e)

    ax.set_xlim(0, 30)
    ax.set_ylim(0, 30)


def test_pandas_indexing(pd):

    # Should not fail break when faced with a
    # non-zero indexed series
    index = [11, 12, 13]
    ec = fc = pd.Series(['red', 'blue', 'green'], index=index)
    lw = pd.Series([1, 2, 3], index=index)
    ls = pd.Series(['solid', 'dashed', 'dashdot'], index=index)
    aa = pd.Series([True, False, True], index=index)

    Collection(edgecolors=ec)
    Collection(facecolors=fc)
    Collection(linewidths=lw)
    Collection(linestyles=ls)
    Collection(antialiaseds=aa)


@mpl.style.context('default')
def test_lslw_bcast():
    col = mcollections.PathCollection([])
    col.set_linestyles(['-', '-'])
    col.set_linewidths([1, 2, 3])

    assert col.get_linestyles() == [(0, None)] * 6
    assert col.get_linewidths() == [1, 2, 3] * 2

    col.set_linestyles(['-', '-', '-'])
    assert col.get_linestyles() == [(0, None)] * 3
    assert (col.get_linewidths() == [1, 2, 3]).all()


def test_set_wrong_linestyle():
    c = Collection()
    with pytest.raises(ValueError, match="Do not know how to convert 'fuzzy'"):
        c.set_linestyle('fuzzy')


@mpl.style.context('default')
def test_capstyle():
    col = mcollections.PathCollection([])
    assert col.get_capstyle() is None
    col = mcollections.PathCollection([], capstyle='round')
    assert col.get_capstyle() == 'round'
    col.set_capstyle('butt')
    assert col.get_capstyle() == 'butt'


@mpl.style.context('default')
def test_joinstyle():
    col = mcollections.PathCollection([])
    assert col.get_joinstyle() is None
    col = mcollections.PathCollection([], joinstyle='round')
    assert col.get_joinstyle() == 'round'
    col.set_joinstyle('miter')
    assert col.get_joinstyle() == 'miter'


@image_comparison(['cap_and_joinstyle.png'])
def test_cap_and_joinstyle_image():
    fig, ax = plt.subplots()
    ax.set_xlim([-0.5, 1.5])
    ax.set_ylim([-0.5, 2.5])

    x = np.array([0.0, 1.0, 0.5])
    ys = np.array([[0.0], [0.5], [1.0]]) + np.array([[0.0, 0.0, 1.0]])

    segs = np.zeros((3, 3, 2))
    segs[:, :, 0] = x
    segs[:, :, 1] = ys
    line_segments = LineCollection(segs, linewidth=[10, 15, 20])
    line_segments.set_capstyle("round")
    line_segments.set_joinstyle("miter")

    ax.add_collection(line_segments)
    ax.set_title('Line collection with customized caps and joinstyle')


@image_comparison(['scatter_post_alpha.png'],
                  remove_text=True, style='default')
def test_scatter_post_alpha():
    fig, ax = plt.subplots()
    sc = ax.scatter(range(5), range(5), c=range(5))
    sc.set_alpha(.1)


def test_scatter_alpha_array():
    x = np.arange(5)
    alpha = x / 5
    # With colormapping.
    fig, (ax0, ax1) = plt.subplots(2)
    sc0 = ax0.scatter(x, x, c=x, alpha=alpha)
    sc1 = ax1.scatter(x, x, c=x)
    sc1.set_alpha(alpha)
    plt.draw()
    assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
    assert_array_equal(sc1.get_facecolors()[:, -1], alpha)
    # Without colormapping.
    fig, (ax0, ax1) = plt.subplots(2)
    sc0 = ax0.scatter(x, x, color=['r', 'g', 'b', 'c', 'm'], alpha=alpha)
    sc1 = ax1.scatter(x, x, color='r', alpha=alpha)
    plt.draw()
    assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
    assert_array_equal(sc1.get_facecolors()[:, -1], alpha)
    # Without colormapping, and set alpha afterward.
    fig, (ax0, ax1) = plt.subplots(2)
    sc0 = ax0.scatter(x, x, color=['r', 'g', 'b', 'c', 'm'])
    sc0.set_alpha(alpha)
    sc1 = ax1.scatter(x, x, color='r')
    sc1.set_alpha(alpha)
    plt.draw()
    assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
    assert_array_equal(sc1.get_facecolors()[:, -1], alpha)


def test_pathcollection_legend_elements():
    np.random.seed(19680801)
    x, y = np.random.rand(2, 10)
    y = np.random.rand(10)
    c = np.random.randint(0, 5, size=10)
    s = np.random.randint(10, 300, size=10)

    fig, ax = plt.subplots()
    sc = ax.scatter(x, y, c=c, s=s, cmap="jet", marker="o", linewidths=0)

    h, l = sc.legend_elements(fmt="{x:g}")
    assert len(h) == 5
    assert l == ["0", "1", "2", "3", "4"]
    colors = np.array([line.get_color() for line in h])
    colors2 = sc.cmap(np.arange(5)/4)
    assert_array_equal(colors, colors2)
    l1 = ax.legend(h, l, loc=1)

    h2, lab2 = sc.legend_elements(num=9)
    assert len(h2) == 9
    l2 = ax.legend(h2, lab2, loc=2)

    h, l = sc.legend_elements(prop="sizes", alpha=0.5, color="red")
    assert all(line.get_alpha() == 0.5 for line in h)
    assert all(line.get_markerfacecolor() == "red" for line in h)
    l3 = ax.legend(h, l, loc=4)

    h, l = sc.legend_elements(prop="sizes", num=4, fmt="{x:.2f}",
                              func=lambda x: 2*x)
    actsizes = [line.get_markersize() for line in h]
    labeledsizes = np.sqrt(np.array(l, float) / 2)
    assert_array_almost_equal(actsizes, labeledsizes)
    l4 = ax.legend(h, l, loc=3)

    loc = mpl.ticker.MaxNLocator(nbins=9, min_n_ticks=9-1,
                                 steps=[1, 2, 2.5, 3, 5, 6, 8, 10])
    h5, lab5 = sc.legend_elements(num=loc)
    assert len(h2) == len(h5)

    levels = [-1, 0, 55.4, 260]
    h6, lab6 = sc.legend_elements(num=levels, prop="sizes", fmt="{x:g}")
    assert [float(l) for l in lab6] == levels[2:]

    for l in [l1, l2, l3, l4]:
        ax.add_artist(l)

    fig.canvas.draw()


def test_EventCollection_nosort():
    # Check that EventCollection doesn't modify input in place
    arr = np.array([3, 2, 1, 10])
    coll = EventCollection(arr)
    np.testing.assert_array_equal(arr, np.array([3, 2, 1, 10]))


def test_collection_set_verts_array():
    verts = np.arange(80, dtype=np.double).reshape(10, 4, 2)
    col_arr = PolyCollection(verts)
    col_list = PolyCollection(list(verts))
    assert len(col_arr._paths) == len(col_list._paths)
    for ap, lp in zip(col_arr._paths, col_list._paths):
        assert np.array_equal(ap._vertices, lp._vertices)
        assert np.array_equal(ap._codes, lp._codes)

    verts_tuple = np.empty(10, dtype=object)
    verts_tuple[:] = [tuple(tuple(y) for y in x) for x in verts]
    col_arr_tuple = PolyCollection(verts_tuple)
    assert len(col_arr._paths) == len(col_arr_tuple._paths)
    for ap, atp in zip(col_arr._paths, col_arr_tuple._paths):
        assert np.array_equal(ap._vertices, atp._vertices)
        assert np.array_equal(ap._codes, atp._codes)


def test_collection_set_array():
    vals = [*range(10)]

    # Test set_array with list
    c = Collection()
    c.set_array(vals)

    # Test set_array with wrong dtype
    with pytest.raises(TypeError, match="^Image data of dtype"):
        c.set_array("wrong_input")

    # Test if array kwarg is copied
    vals[5] = 45
    assert np.not_equal(vals, c.get_array()).any()


def test_blended_collection_autolim():
    a = [1, 2, 4]
    height = .2

    xy_pairs = np.column_stack([np.repeat(a, 2), np.tile([0, height], len(a))])
    line_segs = xy_pairs.reshape([len(a), 2, 2])

    f, ax = plt.subplots()
    trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
    ax.add_collection(LineCollection(line_segs, transform=trans))
    ax.autoscale_view(scalex=True, scaley=False)
    np.testing.assert_allclose(ax.get_xlim(), [1., 4.])


def test_singleton_autolim():
    fig, ax = plt.subplots()
    ax.scatter(0, 0)
    np.testing.assert_allclose(ax.get_ylim(), [-0.06, 0.06])
    np.testing.assert_allclose(ax.get_xlim(), [-0.06, 0.06])


@pytest.mark.parametrize("transform, expected", [
    ("transData", (-0.5, 3.5)),
    ("transAxes", (2.8, 3.2)),
])
def test_autolim_with_zeros(transform, expected):
    # 1) Test that a scatter at (0, 0) data coordinates contributes to
    # autoscaling even though any(offsets) would be False in that situation.
    # 2) Test that specifying transAxes for the transform does not contribute
    # to the autoscaling.
    fig, ax = plt.subplots()
    ax.scatter(0, 0, transform=getattr(ax, transform))
    ax.scatter(3, 3)
    np.testing.assert_allclose(ax.get_ylim(), expected)
    np.testing.assert_allclose(ax.get_xlim(), expected)


def test_quadmesh_set_array_validation(pcfunc):
    x = np.arange(11)
    y = np.arange(8)
    z = np.random.random((7, 10))
    fig, ax = plt.subplots()
    coll = getattr(ax, pcfunc)(x, y, z)

    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (10, 7)")):
        coll.set_array(z.reshape(10, 7))

    z = np.arange(54).reshape((6, 9))
    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (6, 9)")):
        coll.set_array(z)
    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (54,)")):
        coll.set_array(z.ravel())

    # RGB(A) tests
    z = np.ones((9, 6, 3))  # RGB with wrong X/Y dims
    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (9, 6, 3)")):
        coll.set_array(z)

    z = np.ones((9, 6, 4))  # RGBA with wrong X/Y dims
    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (9, 6, 4)")):
        coll.set_array(z)

    z = np.ones((7, 10, 2))  # Right X/Y dims, bad 3rd dim
    with pytest.raises(ValueError, match=re.escape(
            "For X (11) and Y (8) with flat shading, A should have shape "
            "(7, 10, 3) or (7, 10, 4) or (7, 10) or (70,), not (7, 10, 2)")):
        coll.set_array(z)

    x = np.arange(10)
    y = np.arange(7)
    z = np.random.random((7, 10))
    fig, ax = plt.subplots()
    coll = ax.pcolormesh(x, y, z, shading='gouraud')


def test_polyquadmesh_masked_vertices_array():
    xx, yy = np.meshgrid([0, 1, 2], [0, 1, 2, 3])
    # 2 x 3 mesh data
    zz = (xx*yy)[:-1, :-1]
    quadmesh = plt.pcolormesh(xx, yy, zz)
    quadmesh.update_scalarmappable()
    quadmesh_fc = quadmesh.get_facecolor()[1:, :]
    # Mask the origin vertex in x
    xx = np.ma.masked_where((xx == 0) & (yy == 0), xx)
    polymesh = plt.pcolor(xx, yy, zz)
    polymesh.update_scalarmappable()
    # One cell should be left out
    assert len(polymesh.get_paths()) == 5
    # Poly version should have the same facecolors as the end of the quadmesh
    assert_array_equal(quadmesh_fc, polymesh.get_facecolor())

    # Mask the origin vertex in y
    yy = np.ma.masked_where((xx == 0) & (yy == 0), yy)
    polymesh = plt.pcolor(xx, yy, zz)
    polymesh.update_scalarmappable()
    # One cell should be left out
    assert len(polymesh.get_paths()) == 5
    # Poly version should have the same facecolors as the end of the quadmesh
    assert_array_equal(quadmesh_fc, polymesh.get_facecolor())

    # Mask the origin cell data
    zz = np.ma.masked_where((xx[:-1, :-1] == 0) & (yy[:-1, :-1] == 0), zz)
    polymesh = plt.pcolor(zz)
    polymesh.update_scalarmappable()
    # One cell should be left out
    assert len(polymesh.get_paths()) == 5
    # Poly version should have the same facecolors as the end of the quadmesh
    assert_array_equal(quadmesh_fc, polymesh.get_facecolor())

    # Setting array with 1D compressed values is deprecated
    with pytest.warns(mpl.MatplotlibDeprecationWarning,
                      match="Setting a PolyQuadMesh"):
        polymesh.set_array(np.ones(5))

    # We should also be able to call set_array with a new mask and get
    # updated polys
    # Remove mask, should add all polys back
    zz = np.arange(6).reshape((3, 2))
    polymesh.set_array(zz)
    polymesh.update_scalarmappable()
    assert len(polymesh.get_paths()) == 6
    # Add mask should remove polys
    zz = np.ma.masked_less(zz, 2)
    polymesh.set_array(zz)
    polymesh.update_scalarmappable()
    assert len(polymesh.get_paths()) == 4


def test_quadmesh_get_coordinates(pcfunc):
    x = [0, 1, 2]
    y = [2, 4, 6]
    z = np.ones(shape=(2, 2))
    xx, yy = np.meshgrid(x, y)
    coll = getattr(plt, pcfunc)(xx, yy, z)

    # shape (3, 3, 2)
    coords = np.stack([xx.T, yy.T]).T
    assert_array_equal(coll.get_coordinates(), coords)


def test_quadmesh_set_array():
    x = np.arange(4)
    y = np.arange(4)
    z = np.arange(9).reshape((3, 3))
    fig, ax = plt.subplots()
    coll = ax.pcolormesh(x, y, np.ones(z.shape))
    # Test that the collection is able to update with a 2d array
    coll.set_array(z)
    fig.canvas.draw()
    assert np.array_equal(coll.get_array(), z)

    # Check that pre-flattened arrays work too
    coll.set_array(np.ones(9))
    fig.canvas.draw()
    assert np.array_equal(coll.get_array(), np.ones(9))

    z = np.arange(16).reshape((4, 4))
    fig, ax = plt.subplots()
    coll = ax.pcolormesh(x, y, np.ones(z.shape), shading='gouraud')
    # Test that the collection is able to update with a 2d array
    coll.set_array(z)
    fig.canvas.draw()
    assert np.array_equal(coll.get_array(), z)

    # Check that pre-flattened arrays work too
    coll.set_array(np.ones(16))
    fig.canvas.draw()
    assert np.array_equal(coll.get_array(), np.ones(16))


def test_quadmesh_vmin_vmax(pcfunc):
    # test when vmin/vmax on the norm changes, the quadmesh gets updated
    fig, ax = plt.subplots()
    cmap = mpl.colormaps['plasma']
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    coll = getattr(ax, pcfunc)([[1]], cmap=cmap, norm=norm)
    fig.canvas.draw()
    assert np.array_equal(coll.get_facecolors()[0, :], cmap(norm(1)))

    # Change the vmin/vmax of the norm so that the color is from
    # the bottom of the colormap now
    norm.vmin, norm.vmax = 1, 2
    fig.canvas.draw()
    assert np.array_equal(coll.get_facecolors()[0, :], cmap(norm(1)))


def test_quadmesh_alpha_array(pcfunc):
    x = np.arange(4)
    y = np.arange(4)
    z = np.arange(9).reshape((3, 3))
    alpha = z / z.max()
    alpha_flat = alpha.ravel()
    # Provide 2-D alpha:
    fig, (ax0, ax1) = plt.subplots(2)
    coll1 = getattr(ax0, pcfunc)(x, y, z, alpha=alpha)
    coll2 = getattr(ax0, pcfunc)(x, y, z)
    coll2.set_alpha(alpha)
    plt.draw()
    assert_array_equal(coll1.get_facecolors()[:, -1], alpha_flat)
    assert_array_equal(coll2.get_facecolors()[:, -1], alpha_flat)
    # Or provide 1-D alpha:
    fig, (ax0, ax1) = plt.subplots(2)
    coll1 = getattr(ax0, pcfunc)(x, y, z, alpha=alpha)
    coll2 = getattr(ax1, pcfunc)(x, y, z)
    coll2.set_alpha(alpha)
    plt.draw()
    assert_array_equal(coll1.get_facecolors()[:, -1], alpha_flat)
    assert_array_equal(coll2.get_facecolors()[:, -1], alpha_flat)


def test_alpha_validation(pcfunc):
    # Most of the relevant testing is in test_artist and test_colors.
    fig, ax = plt.subplots()
    pc = getattr(ax, pcfunc)(np.arange(12).reshape((3, 4)))
    with pytest.raises(ValueError, match="^Data array shape"):
        pc.set_alpha([0.5, 0.6])
        pc.update_scalarmappable()


def test_legend_inverse_size_label_relationship():
    """
    Ensure legend markers scale appropriately when label and size are
    inversely related.
    Here label = 5 / size
    """

    np.random.seed(19680801)
    X = np.random.random(50)
    Y = np.random.random(50)
    C = 1 - np.random.random(50)
    S = 5 / C

    legend_sizes = [0.2, 0.4, 0.6, 0.8]
    fig, ax = plt.subplots()
    sc = ax.scatter(X, Y, s=S)
    handles, labels = sc.legend_elements(
      prop='sizes', num=legend_sizes, func=lambda s: 5 / s
    )

    # Convert markersize scale to 's' scale
    handle_sizes = [x.get_markersize() for x in handles]
    handle_sizes = [5 / x**2 for x in handle_sizes]

    assert_array_almost_equal(handle_sizes, legend_sizes, decimal=1)


@mpl.style.context('default')
def test_color_logic(pcfunc):
    pcfunc = getattr(plt, pcfunc)
    z = np.arange(12).reshape(3, 4)
    # Explicitly set an edgecolor.
    pc = pcfunc(z, edgecolors='red', facecolors='none')
    pc.update_scalarmappable()  # This is called in draw().
    # Define 2 reference "colors" here for multiple use.
    face_default = mcolors.to_rgba_array(pc._get_default_facecolor())
    mapped = pc.get_cmap()(pc.norm(z.ravel()))
    # GitHub issue #1302:
    assert mcolors.same_color(pc.get_edgecolor(), 'red')
    # Check setting attributes after initialization:
    pc = pcfunc(z)
    pc.set_facecolor('none')
    pc.set_edgecolor('red')
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_facecolor(), 'none')
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    pc.set_alpha(0.5)
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 0.5]])
    pc.set_alpha(None)  # restore default alpha
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    # Reset edgecolor to default.
    pc.set_edgecolor(None)
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_edgecolor(), mapped)
    pc.set_facecolor(None)  # restore default for facecolor
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_facecolor(), mapped)
    assert mcolors.same_color(pc.get_edgecolor(), 'none')
    # Turn off colormapping entirely:
    pc.set_array(None)
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_edgecolor(), 'none')
    assert mcolors.same_color(pc.get_facecolor(), face_default)  # not mapped
    # Turn it back on by restoring the array (must be 1D!):
    pc.set_array(z)
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_facecolor(), mapped)
    assert mcolors.same_color(pc.get_edgecolor(), 'none')
    # Give color via tuple rather than string.
    pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=(0, 1, 0))
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_facecolor(), mapped)
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    # Provide an RGB array; mapping overrides it.
    pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=np.ones((12, 3)))
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_facecolor(), mapped)
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    # Turn off the mapping.
    pc.set_array(None)
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_facecolor(), np.ones((12, 3)))
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    # And an RGBA array.
    pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=np.ones((12, 4)))
    pc.update_scalarmappable()
    assert np.array_equal(pc.get_facecolor(), mapped)
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
    # Turn off the mapping.
    pc.set_array(None)
    pc.update_scalarmappable()
    assert mcolors.same_color(pc.get_facecolor(), np.ones((12, 4)))
    assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])


def test_LineCollection_args():
    lc = LineCollection(None, linewidth=2.2, edgecolor='r',
                        zorder=3, facecolors=[0, 1, 0, 1])
    assert lc.get_linewidth()[0] == 2.2
    assert mcolors.same_color(lc.get_edgecolor(), 'r')
    assert lc.get_zorder() == 3
    assert mcolors.same_color(lc.get_facecolor(), [[0, 1, 0, 1]])
    # To avoid breaking mplot3d, LineCollection internally sets the facecolor
    # kwarg if it has not been specified.  Hence we need the following test
    # for LineCollection._set_default().
    lc = LineCollection(None, facecolor=None)
    assert mcolors.same_color(lc.get_facecolor(), 'none')


def test_array_dimensions(pcfunc):
    # Make sure we can set the 1D, 2D, and 3D array shapes
    z = np.arange(12).reshape(3, 4)
    pc = getattr(plt, pcfunc)(z)
    # 1D
    pc.set_array(z.ravel())
    pc.update_scalarmappable()
    # 2D
    pc.set_array(z)
    pc.update_scalarmappable()
    # 3D RGB is OK as well
    z = np.arange(36, dtype=np.uint8).reshape(3, 4, 3)
    pc.set_array(z)
    pc.update_scalarmappable()


def test_get_segments():
    segments = np.tile(np.linspace(0, 1, 256), (2, 1)).T
    lc = LineCollection([segments])

    readback, = lc.get_segments()
    # these should comeback un-changed!
    assert np.all(segments == readback)


def test_set_offsets_late():
    identity = mtransforms.IdentityTransform()
    sizes = [2]

    null = mcollections.CircleCollection(sizes=sizes)

    init = mcollections.CircleCollection(sizes=sizes, offsets=(10, 10))

    late = mcollections.CircleCollection(sizes=sizes)
    late.set_offsets((10, 10))

    # Bbox.__eq__ doesn't compare bounds
    null_bounds = null.get_datalim(identity).bounds
    init_bounds = init.get_datalim(identity).bounds
    late_bounds = late.get_datalim(identity).bounds

    # offsets and transform are applied when set after initialization
    assert null_bounds != init_bounds
    assert init_bounds == late_bounds


def test_set_offset_transform():
    skew = mtransforms.Affine2D().skew(2, 2)
    init = mcollections.Collection(offset_transform=skew)

    late = mcollections.Collection()
    late.set_offset_transform(skew)

    assert skew == init.get_offset_transform() == late.get_offset_transform()


def test_set_offset_units():
    # passing the offsets in initially (i.e. via scatter)
    # should yield the same results as `set_offsets`
    x = np.linspace(0, 10, 5)
    y = np.sin(x)
    d = x * np.timedelta64(24, 'h') + np.datetime64('2021-11-29')

    sc = plt.scatter(d, y)
    off0 = sc.get_offsets()
    sc.set_offsets(list(zip(d, y)))
    np.testing.assert_allclose(off0, sc.get_offsets())

    # try the other way around
    fig, ax = plt.subplots()
    sc = ax.scatter(y, d)
    off0 = sc.get_offsets()
    sc.set_offsets(list(zip(y, d)))
    np.testing.assert_allclose(off0, sc.get_offsets())


@image_comparison(baseline_images=["test_check_masked_offsets"],
                  extensions=["png"], remove_text=True, style="mpl20")
def test_check_masked_offsets():
    # Check if masked data is respected by scatter
    # Ref: Issue #24545
    unmasked_x = [
        datetime(2022, 12, 15, 4, 49, 52),
        datetime(2022, 12, 15, 4, 49, 53),
        datetime(2022, 12, 15, 4, 49, 54),
        datetime(2022, 12, 15, 4, 49, 55),
        datetime(2022, 12, 15, 4, 49, 56),
    ]

    masked_y = np.ma.array([1, 2, 3, 4, 5], mask=[0, 1, 1, 0, 0])

    fig, ax = plt.subplots()
    ax.scatter(unmasked_x, masked_y)


@check_figures_equal(extensions=["png"])
def test_masked_set_offsets(fig_ref, fig_test):
    x = np.ma.array([1, 2, 3, 4, 5], mask=[0, 0, 1, 1, 0])
    y = np.arange(1, 6)

    ax_test = fig_test.add_subplot()
    scat = ax_test.scatter(x, y)
    scat.set_offsets(np.ma.column_stack([x, y]))
    ax_test.set_xticks([])
    ax_test.set_yticks([])

    ax_ref = fig_ref.add_subplot()
    ax_ref.scatter([1, 2, 5], [1, 2, 5])
    ax_ref.set_xticks([])
    ax_ref.set_yticks([])


def test_check_offsets_dtype():
    # Check that setting offsets doesn't change dtype
    x = np.ma.array([1, 2, 3, 4, 5], mask=[0, 0, 1, 1, 0])
    y = np.arange(1, 6)

    fig, ax = plt.subplots()
    scat = ax.scatter(x, y)
    masked_offsets = np.ma.column_stack([x, y])
    scat.set_offsets(masked_offsets)
    assert isinstance(scat.get_offsets(), type(masked_offsets))

    unmasked_offsets = np.column_stack([x, y])
    scat.set_offsets(unmasked_offsets)
    assert isinstance(scat.get_offsets(), type(unmasked_offsets))


@pytest.mark.parametrize('gapcolor', ['orange', ['r', 'k']])
@check_figures_equal(extensions=['png'])
@mpl.rc_context({'lines.linewidth': 20})
def test_striped_lines(fig_test, fig_ref, gapcolor):
    ax_test = fig_test.add_subplot(111)
    ax_ref = fig_ref.add_subplot(111)

    for ax in [ax_test, ax_ref]:
        ax.set_xlim(0, 6)
        ax.set_ylim(0, 1)

    x = range(1, 6)
    linestyles = [':', '-', '--']

    ax_test.vlines(x, 0, 1, linestyle=linestyles, gapcolor=gapcolor, alpha=0.5)

    if isinstance(gapcolor, str):
        gapcolor = [gapcolor]

    for x, gcol, ls in zip(x, itertools.cycle(gapcolor),
                           itertools.cycle(linestyles)):
        ax_ref.axvline(x, 0, 1, linestyle=ls, gapcolor=gcol, alpha=0.5)