File size: 17,711 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import numpy as np

import matplotlib as mpl
from matplotlib import _api
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib.patches import Circle
from matplotlib.path import Path
import matplotlib.spines as mspines
from matplotlib.ticker import (
    Formatter, NullLocator, FixedLocator, NullFormatter)
from matplotlib.transforms import Affine2D, BboxTransformTo, Transform


class GeoAxes(Axes):
    """An abstract base class for geographic projections."""

    class ThetaFormatter(Formatter):
        """
        Used to format the theta tick labels.  Converts the native
        unit of radians into degrees and adds a degree symbol.
        """
        def __init__(self, round_to=1.0):
            self._round_to = round_to

        def __call__(self, x, pos=None):
            degrees = round(np.rad2deg(x) / self._round_to) * self._round_to
            return f"{degrees:0.0f}\N{DEGREE SIGN}"

    RESOLUTION = 75

    def _init_axis(self):
        self.xaxis = maxis.XAxis(self, clear=False)
        self.yaxis = maxis.YAxis(self, clear=False)
        self.spines['geo'].register_axis(self.yaxis)

    def clear(self):
        # docstring inherited
        super().clear()

        self.set_longitude_grid(30)
        self.set_latitude_grid(15)
        self.set_longitude_grid_ends(75)
        self.xaxis.set_minor_locator(NullLocator())
        self.yaxis.set_minor_locator(NullLocator())
        self.xaxis.set_ticks_position('none')
        self.yaxis.set_ticks_position('none')
        self.yaxis.set_tick_params(label1On=True)
        # Why do we need to turn on yaxis tick labels, but
        # xaxis tick labels are already on?

        self.grid(mpl.rcParams['axes.grid'])

        Axes.set_xlim(self, -np.pi, np.pi)
        Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0)

    def _set_lim_and_transforms(self):
        # A (possibly non-linear) projection on the (already scaled) data
        self.transProjection = self._get_core_transform(self.RESOLUTION)

        self.transAffine = self._get_affine_transform()

        self.transAxes = BboxTransformTo(self.bbox)

        # The complete data transformation stack -- from data all the
        # way to display coordinates
        self.transData = \
            self.transProjection + \
            self.transAffine + \
            self.transAxes

        # This is the transform for longitude ticks.
        self._xaxis_pretransform = \
            Affine2D() \
            .scale(1, self._longitude_cap * 2) \
            .translate(0, -self._longitude_cap)
        self._xaxis_transform = \
            self._xaxis_pretransform + \
            self.transData
        self._xaxis_text1_transform = \
            Affine2D().scale(1, 0) + \
            self.transData + \
            Affine2D().translate(0, 4)
        self._xaxis_text2_transform = \
            Affine2D().scale(1, 0) + \
            self.transData + \
            Affine2D().translate(0, -4)

        # This is the transform for latitude ticks.
        yaxis_stretch = Affine2D().scale(np.pi * 2, 1).translate(-np.pi, 0)
        yaxis_space = Affine2D().scale(1, 1.1)
        self._yaxis_transform = \
            yaxis_stretch + \
            self.transData
        yaxis_text_base = \
            yaxis_stretch + \
            self.transProjection + \
            (yaxis_space +
             self.transAffine +
             self.transAxes)
        self._yaxis_text1_transform = \
            yaxis_text_base + \
            Affine2D().translate(-8, 0)
        self._yaxis_text2_transform = \
            yaxis_text_base + \
            Affine2D().translate(8, 0)

    def _get_affine_transform(self):
        transform = self._get_core_transform(1)
        xscale, _ = transform.transform((np.pi, 0))
        _, yscale = transform.transform((0, np.pi/2))
        return Affine2D() \
            .scale(0.5 / xscale, 0.5 / yscale) \
            .translate(0.5, 0.5)

    def get_xaxis_transform(self, which='grid'):
        _api.check_in_list(['tick1', 'tick2', 'grid'], which=which)
        return self._xaxis_transform

    def get_xaxis_text1_transform(self, pad):
        return self._xaxis_text1_transform, 'bottom', 'center'

    def get_xaxis_text2_transform(self, pad):
        return self._xaxis_text2_transform, 'top', 'center'

    def get_yaxis_transform(self, which='grid'):
        _api.check_in_list(['tick1', 'tick2', 'grid'], which=which)
        return self._yaxis_transform

    def get_yaxis_text1_transform(self, pad):
        return self._yaxis_text1_transform, 'center', 'right'

    def get_yaxis_text2_transform(self, pad):
        return self._yaxis_text2_transform, 'center', 'left'

    def _gen_axes_patch(self):
        return Circle((0.5, 0.5), 0.5)

    def _gen_axes_spines(self):
        return {'geo': mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)}

    def set_yscale(self, *args, **kwargs):
        if args[0] != 'linear':
            raise NotImplementedError

    set_xscale = set_yscale

    def set_xlim(self, *args, **kwargs):
        """Not supported. Please consider using Cartopy."""
        raise TypeError("Changing axes limits of a geographic projection is "
                        "not supported.  Please consider using Cartopy.")

    set_ylim = set_xlim

    def format_coord(self, lon, lat):
        """Return a format string formatting the coordinate."""
        lon, lat = np.rad2deg([lon, lat])
        ns = 'N' if lat >= 0.0 else 'S'
        ew = 'E' if lon >= 0.0 else 'W'
        return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s'
                % (abs(lat), ns, abs(lon), ew))

    def set_longitude_grid(self, degrees):
        """
        Set the number of degrees between each longitude grid.
        """
        # Skip -180 and 180, which are the fixed limits.
        grid = np.arange(-180 + degrees, 180, degrees)
        self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid)))
        self.xaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_latitude_grid(self, degrees):
        """
        Set the number of degrees between each latitude grid.
        """
        # Skip -90 and 90, which are the fixed limits.
        grid = np.arange(-90 + degrees, 90, degrees)
        self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid)))
        self.yaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_longitude_grid_ends(self, degrees):
        """
        Set the latitude(s) at which to stop drawing the longitude grids.
        """
        self._longitude_cap = np.deg2rad(degrees)
        self._xaxis_pretransform \
            .clear() \
            .scale(1.0, self._longitude_cap * 2.0) \
            .translate(0.0, -self._longitude_cap)

    def get_data_ratio(self):
        """Return the aspect ratio of the data itself."""
        return 1.0

    ### Interactive panning

    def can_zoom(self):
        """
        Return whether this Axes supports the zoom box button functionality.

        This Axes object does not support interactive zoom box.
        """
        return False

    def can_pan(self):
        """
        Return whether this Axes supports the pan/zoom button functionality.

        This Axes object does not support interactive pan/zoom.
        """
        return False

    def start_pan(self, x, y, button):
        pass

    def end_pan(self):
        pass

    def drag_pan(self, button, key, x, y):
        pass


class _GeoTransform(Transform):
    # Factoring out some common functionality.
    input_dims = output_dims = 2

    def __init__(self, resolution):
        """
        Create a new geographical transform.

        Resolution is the number of steps to interpolate between each input
        line segment to approximate its path in curved space.
        """
        super().__init__()
        self._resolution = resolution

    def __str__(self):
        return f"{type(self).__name__}({self._resolution})"

    def transform_path_non_affine(self, path):
        # docstring inherited
        ipath = path.interpolated(self._resolution)
        return Path(self.transform(ipath.vertices), ipath.codes)


class AitoffAxes(GeoAxes):
    name = 'aitoff'

    class AitoffTransform(_GeoTransform):
        """The base Aitoff transform."""

        @_api.rename_parameter("3.8", "ll", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            longitude, latitude = values.T

            # Pre-compute some values
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)

            alpha = np.arccos(cos_latitude * np.cos(half_long))
            sinc_alpha = np.sinc(alpha / np.pi)  # np.sinc is sin(pi*x)/(pi*x).

            x = (cos_latitude * np.sin(half_long)) / sinc_alpha
            y = np.sin(latitude) / sinc_alpha
            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return AitoffAxes.InvertedAitoffTransform(self._resolution)

    class InvertedAitoffTransform(_GeoTransform):

        @_api.rename_parameter("3.8", "xy", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            # MGDTODO: Math is hard ;(
            return np.full_like(values, np.nan)

        def inverted(self):
            # docstring inherited
            return AitoffAxes.AitoffTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        super().__init__(*args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.clear()

    def _get_core_transform(self, resolution):
        return self.AitoffTransform(resolution)


class HammerAxes(GeoAxes):
    name = 'hammer'

    class HammerTransform(_GeoTransform):
        """The base Hammer transform."""

        @_api.rename_parameter("3.8", "ll", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            longitude, latitude = values.T
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)
            sqrt2 = np.sqrt(2.0)
            alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long))
            x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha
            y = (sqrt2 * np.sin(latitude)) / alpha
            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return HammerAxes.InvertedHammerTransform(self._resolution)

    class InvertedHammerTransform(_GeoTransform):

        @_api.rename_parameter("3.8", "xy", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            x, y = values.T
            z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2)
            longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1)))
            latitude = np.arcsin(y*z)
            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return HammerAxes.HammerTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        super().__init__(*args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.clear()

    def _get_core_transform(self, resolution):
        return self.HammerTransform(resolution)


class MollweideAxes(GeoAxes):
    name = 'mollweide'

    class MollweideTransform(_GeoTransform):
        """The base Mollweide transform."""

        @_api.rename_parameter("3.8", "ll", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            def d(theta):
                delta = (-(theta + np.sin(theta) - pi_sin_l)
                         / (1 + np.cos(theta)))
                return delta, np.abs(delta) > 0.001

            longitude, latitude = values.T

            clat = np.pi/2 - np.abs(latitude)
            ihigh = clat < 0.087  # within 5 degrees of the poles
            ilow = ~ihigh
            aux = np.empty(latitude.shape, dtype=float)

            if ilow.any():  # Newton-Raphson iteration
                pi_sin_l = np.pi * np.sin(latitude[ilow])
                theta = 2.0 * latitude[ilow]
                delta, large_delta = d(theta)
                while np.any(large_delta):
                    theta[large_delta] += delta[large_delta]
                    delta, large_delta = d(theta)
                aux[ilow] = theta / 2

            if ihigh.any():  # Taylor series-based approx. solution
                e = clat[ihigh]
                d = 0.5 * (3 * np.pi * e**2) ** (1.0/3)
                aux[ihigh] = (np.pi/2 - d) * np.sign(latitude[ihigh])

            xy = np.empty(values.shape, dtype=float)
            xy[:, 0] = (2.0 * np.sqrt(2.0) / np.pi) * longitude * np.cos(aux)
            xy[:, 1] = np.sqrt(2.0) * np.sin(aux)

            return xy

        def inverted(self):
            # docstring inherited
            return MollweideAxes.InvertedMollweideTransform(self._resolution)

    class InvertedMollweideTransform(_GeoTransform):

        @_api.rename_parameter("3.8", "xy", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            x, y = values.T
            # from Equations (7, 8) of
            # https://mathworld.wolfram.com/MollweideProjection.html
            theta = np.arcsin(y / np.sqrt(2))
            longitude = (np.pi / (2 * np.sqrt(2))) * x / np.cos(theta)
            latitude = np.arcsin((2 * theta + np.sin(2 * theta)) / np.pi)
            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return MollweideAxes.MollweideTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        super().__init__(*args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.clear()

    def _get_core_transform(self, resolution):
        return self.MollweideTransform(resolution)


class LambertAxes(GeoAxes):
    name = 'lambert'

    class LambertTransform(_GeoTransform):
        """The base Lambert transform."""

        def __init__(self, center_longitude, center_latitude, resolution):
            """
            Create a new Lambert transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Lambert space.
            """
            _GeoTransform.__init__(self, resolution)
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        @_api.rename_parameter("3.8", "ll", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            longitude, latitude = values.T
            clong = self._center_longitude
            clat = self._center_latitude
            cos_lat = np.cos(latitude)
            sin_lat = np.sin(latitude)
            diff_long = longitude - clong
            cos_diff_long = np.cos(diff_long)

            inner_k = np.maximum(  # Prevent divide-by-zero problems
                1 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long,
                1e-15)
            k = np.sqrt(2 / inner_k)
            x = k * cos_lat*np.sin(diff_long)
            y = k * (np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long)

            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return LambertAxes.InvertedLambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)

    class InvertedLambertTransform(_GeoTransform):

        def __init__(self, center_longitude, center_latitude, resolution):
            _GeoTransform.__init__(self, resolution)
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        @_api.rename_parameter("3.8", "xy", "values")
        def transform_non_affine(self, values):
            # docstring inherited
            x, y = values.T
            clong = self._center_longitude
            clat = self._center_latitude
            p = np.maximum(np.hypot(x, y), 1e-9)
            c = 2 * np.arcsin(0.5 * p)
            sin_c = np.sin(c)
            cos_c = np.cos(c)

            latitude = np.arcsin(cos_c*np.sin(clat) +
                                 ((y*sin_c*np.cos(clat)) / p))
            longitude = clong + np.arctan(
                (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c))

            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return LambertAxes.LambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)

    def __init__(self, *args, center_longitude=0, center_latitude=0, **kwargs):
        self._longitude_cap = np.pi / 2
        self._center_longitude = center_longitude
        self._center_latitude = center_latitude
        super().__init__(*args, **kwargs)
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.clear()

    def clear(self):
        # docstring inherited
        super().clear()
        self.yaxis.set_major_formatter(NullFormatter())

    def _get_core_transform(self, resolution):
        return self.LambertTransform(
            self._center_longitude,
            self._center_latitude,
            resolution)

    def _get_affine_transform(self):
        return Affine2D() \
            .scale(0.25) \
            .translate(0.5, 0.5)