File size: 178,148 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
from collections.abc import Iterable, Sequence
from contextlib import ExitStack
import functools
import inspect
import logging
from numbers import Real
from operator import attrgetter
import types

import numpy as np

import matplotlib as mpl
from matplotlib import _api, cbook, _docstring, offsetbox
import matplotlib.artist as martist
import matplotlib.axis as maxis
from matplotlib.cbook import _OrderedSet, _check_1d, index_of
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.font_manager as font_manager
from matplotlib.gridspec import SubplotSpec
import matplotlib.image as mimage
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
from matplotlib.rcsetup import cycler, validate_axisbelow
import matplotlib.spines as mspines
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms

_log = logging.getLogger(__name__)


class _axis_method_wrapper:
    """
    Helper to generate Axes methods wrapping Axis methods.

    After ::

        get_foo = _axis_method_wrapper("xaxis", "get_bar")

    (in the body of a class) ``get_foo`` is a method that forwards it arguments
    to the ``get_bar`` method of the ``xaxis`` attribute, and gets its
    signature and docstring from ``Axis.get_bar``.

    The docstring of ``get_foo`` is built by replacing "this Axis" by "the
    {attr_name}" (i.e., "the xaxis", "the yaxis") in the wrapped method's
    dedented docstring; additional replacements can be given in *doc_sub*.
    """

    def __init__(self, attr_name, method_name, *, doc_sub=None):
        self.attr_name = attr_name
        self.method_name = method_name
        # Immediately put the docstring in ``self.__doc__`` so that docstring
        # manipulations within the class body work as expected.
        doc = inspect.getdoc(getattr(maxis.Axis, method_name))
        self._missing_subs = []
        if doc:
            doc_sub = {"this Axis": f"the {self.attr_name}", **(doc_sub or {})}
            for k, v in doc_sub.items():
                if k not in doc:  # Delay raising error until we know qualname.
                    self._missing_subs.append(k)
                doc = doc.replace(k, v)
        self.__doc__ = doc

    def __set_name__(self, owner, name):
        # This is called at the end of the class body as
        # ``self.__set_name__(cls, name_under_which_self_is_assigned)``; we
        # rely on that to give the wrapper the correct __name__/__qualname__.
        get_method = attrgetter(f"{self.attr_name}.{self.method_name}")

        def wrapper(self, *args, **kwargs):
            return get_method(self)(*args, **kwargs)

        wrapper.__module__ = owner.__module__
        wrapper.__name__ = name
        wrapper.__qualname__ = f"{owner.__qualname__}.{name}"
        wrapper.__doc__ = self.__doc__
        # Manually copy the signature instead of using functools.wraps because
        # displaying the Axis method source when asking for the Axes method
        # source would be confusing.
        wrapper.__signature__ = inspect.signature(
            getattr(maxis.Axis, self.method_name))

        if self._missing_subs:
            raise ValueError(
                "The definition of {} expected that the docstring of Axis.{} "
                "contains {!r} as substrings".format(
                    wrapper.__qualname__, self.method_name,
                    ", ".join(map(repr, self._missing_subs))))

        setattr(owner, name, wrapper)


class _TransformedBoundsLocator:
    """
    Axes locator for `.Axes.inset_axes` and similarly positioned Axes.

    The locator is a callable object used in `.Axes.set_aspect` to compute the
    Axes location depending on the renderer.
    """

    def __init__(self, bounds, transform):
        """
        *bounds* (a ``[l, b, w, h]`` rectangle) and *transform* together
        specify the position of the inset Axes.
        """
        self._bounds = bounds
        self._transform = transform

    def __call__(self, ax, renderer):
        # Subtracting transSubfigure will typically rely on inverted(),
        # freezing the transform; thus, this needs to be delayed until draw
        # time as transSubfigure may otherwise change after this is evaluated.
        return mtransforms.TransformedBbox(
            mtransforms.Bbox.from_bounds(*self._bounds),
            self._transform - ax.figure.transSubfigure)


def _process_plot_format(fmt, *, ambiguous_fmt_datakey=False):
    """
    Convert a MATLAB style color/line style format string to a (*linestyle*,
    *marker*, *color*) tuple.

    Example format strings include:

    * 'ko': black circles
    * '.b': blue dots
    * 'r--': red dashed lines
    * 'C2--': the third color in the color cycle, dashed lines

    The format is absolute in the sense that if a linestyle or marker is not
    defined in *fmt*, there is no line or marker. This is expressed by
    returning 'None' for the respective quantity.

    See Also
    --------
    matplotlib.Line2D.lineStyles, matplotlib.colors.cnames
        All possible styles and color format strings.
    """

    linestyle = None
    marker = None
    color = None

    # Is fmt just a colorspec?
    try:
        color = mcolors.to_rgba(fmt)

        # We need to differentiate grayscale '1.0' from tri_down marker '1'
        try:
            fmtint = str(int(fmt))
        except ValueError:
            return linestyle, marker, color  # Yes
        else:
            if fmt != fmtint:
                # user definitely doesn't want tri_down marker
                return linestyle, marker, color  # Yes
            else:
                # ignore converted color
                color = None
    except ValueError:
        pass  # No, not just a color.

    errfmt = ("{!r} is neither a data key nor a valid format string ({})"
              if ambiguous_fmt_datakey else
              "{!r} is not a valid format string ({})")

    i = 0
    while i < len(fmt):
        c = fmt[i]
        if fmt[i:i+2] in mlines.lineStyles:  # First, the two-char styles.
            if linestyle is not None:
                raise ValueError(errfmt.format(fmt, "two linestyle symbols"))
            linestyle = fmt[i:i+2]
            i += 2
        elif c in mlines.lineStyles:
            if linestyle is not None:
                raise ValueError(errfmt.format(fmt, "two linestyle symbols"))
            linestyle = c
            i += 1
        elif c in mlines.lineMarkers:
            if marker is not None:
                raise ValueError(errfmt.format(fmt, "two marker symbols"))
            marker = c
            i += 1
        elif c in mcolors.get_named_colors_mapping():
            if color is not None:
                raise ValueError(errfmt.format(fmt, "two color symbols"))
            color = c
            i += 1
        elif c == 'C' and i < len(fmt) - 1:
            color_cycle_number = int(fmt[i + 1])
            color = mcolors.to_rgba(f"C{color_cycle_number}")
            i += 2
        else:
            raise ValueError(
                errfmt.format(fmt, f"unrecognized character {c!r}"))

    if linestyle is None and marker is None:
        linestyle = mpl.rcParams['lines.linestyle']
    if linestyle is None:
        linestyle = 'None'
    if marker is None:
        marker = 'None'

    return linestyle, marker, color


class _process_plot_var_args:
    """
    Process variable length arguments to `~.Axes.plot`, to support ::

      plot(t, s)
      plot(t1, s1, t2, s2)
      plot(t1, s1, 'ko', t2, s2)
      plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)

    an arbitrary number of *x*, *y*, *fmt* are allowed
    """

    def __init__(self, command='plot'):
        self.command = command
        self.set_prop_cycle(None)

    def set_prop_cycle(self, cycler):
        if cycler is None:
            cycler = mpl.rcParams['axes.prop_cycle']
        self._idx = 0
        self._cycler_items = [*cycler]
        self._prop_keys = cycler.keys  # This should make a copy

    def __call__(self, axes, *args, data=None, **kwargs):
        axes._process_unit_info(kwargs=kwargs)

        for pos_only in "xy":
            if pos_only in kwargs:
                raise _api.kwarg_error(self.command, pos_only)

        if not args:
            return

        if data is None:  # Process dict views
            args = [cbook.sanitize_sequence(a) for a in args]
        else:  # Process the 'data' kwarg.
            replaced = [mpl._replacer(data, arg) for arg in args]
            if len(args) == 1:
                label_namer_idx = 0
            elif len(args) == 2:  # Can be x, y or y, c.
                # Figure out what the second argument is.
                # 1) If the second argument cannot be a format shorthand, the
                #    second argument is the label_namer.
                # 2) Otherwise (it could have been a format shorthand),
                #    a) if we did perform a substitution, emit a warning, and
                #       use it as label_namer.
                #    b) otherwise, it is indeed a format shorthand; use the
                #       first argument as label_namer.
                try:
                    _process_plot_format(args[1])
                except ValueError:  # case 1)
                    label_namer_idx = 1
                else:
                    if replaced[1] is not args[1]:  # case 2a)
                        _api.warn_external(
                            f"Second argument {args[1]!r} is ambiguous: could "
                            f"be a format string but is in 'data'; using as "
                            f"data.  If it was intended as data, set the "
                            f"format string to an empty string to suppress "
                            f"this warning.  If it was intended as a format "
                            f"string, explicitly pass the x-values as well.  "
                            f"Alternatively, rename the entry in 'data'.",
                            RuntimeWarning)
                        label_namer_idx = 1
                    else:  # case 2b)
                        label_namer_idx = 0
            elif len(args) == 3:
                label_namer_idx = 1
            else:
                raise ValueError(
                    "Using arbitrary long args with data is not supported due "
                    "to ambiguity of arguments; use multiple plotting calls "
                    "instead")
            if kwargs.get("label") is None:
                kwargs["label"] = mpl._label_from_arg(
                    replaced[label_namer_idx], args[label_namer_idx])
            args = replaced
        ambiguous_fmt_datakey = data is not None and len(args) == 2

        if len(args) >= 4 and not cbook.is_scalar_or_string(
                kwargs.get("label")):
            raise ValueError("plot() with multiple groups of data (i.e., "
                             "pairs of x and y) does not support multiple "
                             "labels")

        # Repeatedly grab (x, y) or (x, y, format) from the front of args and
        # massage them into arguments to plot() or fill().

        while args:
            this, args = args[:2], args[2:]
            if args and isinstance(args[0], str):
                this += args[0],
                args = args[1:]
            yield from self._plot_args(
                axes, this, kwargs, ambiguous_fmt_datakey=ambiguous_fmt_datakey)

    def get_next_color(self):
        """Return the next color in the cycle."""
        if 'color' not in self._prop_keys:
            return 'k'
        c = self._cycler_items[self._idx]['color']
        self._idx = (self._idx + 1) % len(self._cycler_items)
        return c

    def _getdefaults(self, ignore, kw):
        """
        If some keys in the property cycle (excluding those in the set
        *ignore*) are absent or set to None in the dict *kw*, return a copy
        of the next entry in the property cycle, excluding keys in *ignore*.
        Otherwise, don't advance the property cycle, and return an empty dict.
        """
        prop_keys = self._prop_keys - ignore
        if any(kw.get(k, None) is None for k in prop_keys):
            # Need to copy this dictionary or else the next time around
            # in the cycle, the dictionary could be missing entries.
            default_dict = self._cycler_items[self._idx].copy()
            self._idx = (self._idx + 1) % len(self._cycler_items)
            for p in ignore:
                default_dict.pop(p, None)
        else:
            default_dict = {}
        return default_dict

    def _setdefaults(self, defaults, kw):
        """
        Add to the dict *kw* the entries in the dict *default* that are absent
        or set to None in *kw*.
        """
        for k in defaults:
            if kw.get(k, None) is None:
                kw[k] = defaults[k]

    def _makeline(self, axes, x, y, kw, kwargs):
        kw = {**kw, **kwargs}  # Don't modify the original kw.
        default_dict = self._getdefaults(set(), kw)
        self._setdefaults(default_dict, kw)
        seg = mlines.Line2D(x, y, **kw)
        return seg, kw

    def _makefill(self, axes, x, y, kw, kwargs):
        # Polygon doesn't directly support unitized inputs.
        x = axes.convert_xunits(x)
        y = axes.convert_yunits(y)

        kw = kw.copy()  # Don't modify the original kw.
        kwargs = kwargs.copy()

        # Ignore 'marker'-related properties as they aren't Polygon
        # properties, but they are Line2D properties, and so they are
        # likely to appear in the default cycler construction.
        # This is done here to the defaults dictionary as opposed to the
        # other two dictionaries because we do want to capture when a
        # *user* explicitly specifies a marker which should be an error.
        # We also want to prevent advancing the cycler if there are no
        # defaults needed after ignoring the given properties.
        ignores = {'marker', 'markersize', 'markeredgecolor',
                   'markerfacecolor', 'markeredgewidth'}
        # Also ignore anything provided by *kwargs*.
        for k, v in kwargs.items():
            if v is not None:
                ignores.add(k)

        # Only using the first dictionary to use as basis
        # for getting defaults for back-compat reasons.
        # Doing it with both seems to mess things up in
        # various places (probably due to logic bugs elsewhere).
        default_dict = self._getdefaults(ignores, kw)
        self._setdefaults(default_dict, kw)

        # Looks like we don't want "color" to be interpreted to
        # mean both facecolor and edgecolor for some reason.
        # So the "kw" dictionary is thrown out, and only its
        # 'color' value is kept and translated as a 'facecolor'.
        # This design should probably be revisited as it increases
        # complexity.
        facecolor = kw.get('color', None)

        # Throw out 'color' as it is now handled as a facecolor
        default_dict.pop('color', None)

        # To get other properties set from the cycler
        # modify the kwargs dictionary.
        self._setdefaults(default_dict, kwargs)

        seg = mpatches.Polygon(np.column_stack((x, y)),
                               facecolor=facecolor,
                               fill=kwargs.get('fill', True),
                               closed=kw['closed'])
        seg.set(**kwargs)
        return seg, kwargs

    def _plot_args(self, axes, tup, kwargs, *,
                   return_kwargs=False, ambiguous_fmt_datakey=False):
        """
        Process the arguments of ``plot([x], y, [fmt], **kwargs)`` calls.

        This processes a single set of ([x], y, [fmt]) parameters; i.e. for
        ``plot(x, y, x2, y2)`` it will be called twice. Once for (x, y) and
        once for (x2, y2).

        x and y may be 2D and thus can still represent multiple datasets.

        For multiple datasets, if the keyword argument *label* is a list, this
        will unpack the list and assign the individual labels to the datasets.

        Parameters
        ----------
        tup : tuple
            A tuple of the positional parameters. This can be one of

            - (y,)
            - (x, y)
            - (y, fmt)
            - (x, y, fmt)

        kwargs : dict
            The keyword arguments passed to ``plot()``.

        return_kwargs : bool
            Whether to also return the effective keyword arguments after label
            unpacking as well.

        ambiguous_fmt_datakey : bool
            Whether the format string in *tup* could also have been a
            misspelled data key.

        Returns
        -------
        result
            If *return_kwargs* is false, a list of Artists representing the
            dataset(s).
            If *return_kwargs* is true, a list of (Artist, effective_kwargs)
            representing the dataset(s). See *return_kwargs*.
            The Artist is either `.Line2D` (if called from ``plot()``) or
            `.Polygon` otherwise.
        """
        if len(tup) > 1 and isinstance(tup[-1], str):
            # xy is tup with fmt stripped (could still be (y,) only)
            *xy, fmt = tup
            linestyle, marker, color = _process_plot_format(
                fmt, ambiguous_fmt_datakey=ambiguous_fmt_datakey)
        elif len(tup) == 3:
            raise ValueError('third arg must be a format string')
        else:
            xy = tup
            linestyle, marker, color = None, None, None

        # Don't allow any None value; these would be up-converted to one
        # element array of None which causes problems downstream.
        if any(v is None for v in tup):
            raise ValueError("x, y, and format string must not be None")

        kw = {}
        for prop_name, val in zip(('linestyle', 'marker', 'color'),
                                  (linestyle, marker, color)):
            if val is not None:
                # check for conflicts between fmt and kwargs
                if (fmt.lower() != 'none'
                        and prop_name in kwargs
                        and val != 'None'):
                    # Technically ``plot(x, y, 'o', ls='--')`` is a conflict
                    # because 'o' implicitly unsets the linestyle
                    # (linestyle='None').
                    # We'll gracefully not warn in this case because an
                    # explicit set via kwargs can be seen as intention to
                    # override an implicit unset.
                    # Note: We don't val.lower() != 'none' because val is not
                    # necessarily a string (can be a tuple for colors). This
                    # is safe, because *val* comes from _process_plot_format()
                    # which only returns 'None'.
                    _api.warn_external(
                        f"{prop_name} is redundantly defined by the "
                        f"'{prop_name}' keyword argument and the fmt string "
                        f'"{fmt}" (-> {prop_name}={val!r}). The keyword '
                        f"argument will take precedence.")
                kw[prop_name] = val

        if len(xy) == 2:
            x = _check_1d(xy[0])
            y = _check_1d(xy[1])
        else:
            x, y = index_of(xy[-1])

        if axes.xaxis is not None:
            axes.xaxis.update_units(x)
        if axes.yaxis is not None:
            axes.yaxis.update_units(y)

        if x.shape[0] != y.shape[0]:
            raise ValueError(f"x and y must have same first dimension, but "
                             f"have shapes {x.shape} and {y.shape}")
        if x.ndim > 2 or y.ndim > 2:
            raise ValueError(f"x and y can be no greater than 2D, but have "
                             f"shapes {x.shape} and {y.shape}")
        if x.ndim == 1:
            x = x[:, np.newaxis]
        if y.ndim == 1:
            y = y[:, np.newaxis]

        if self.command == 'plot':
            make_artist = self._makeline
        else:
            kw['closed'] = kwargs.get('closed', True)
            make_artist = self._makefill

        ncx, ncy = x.shape[1], y.shape[1]
        if ncx > 1 and ncy > 1 and ncx != ncy:
            raise ValueError(f"x has {ncx} columns but y has {ncy} columns")
        if ncx == 0 or ncy == 0:
            return []

        label = kwargs.get('label')
        n_datasets = max(ncx, ncy)
        if n_datasets > 1 and not cbook.is_scalar_or_string(label):
            if len(label) != n_datasets:
                raise ValueError(f"label must be scalar or have the same "
                                 f"length as the input data, but found "
                                 f"{len(label)} for {n_datasets} datasets.")
            labels = label
        else:
            labels = [label] * n_datasets

        result = (make_artist(axes, x[:, j % ncx], y[:, j % ncy], kw,
                              {**kwargs, 'label': label})
                  for j, label in enumerate(labels))

        if return_kwargs:
            return list(result)
        else:
            return [l[0] for l in result]


@_api.define_aliases({"facecolor": ["fc"]})
class _AxesBase(martist.Artist):
    name = "rectilinear"

    # axis names are the prefixes for the attributes that contain the
    # respective axis; e.g. 'x' <-> self.xaxis, containing an XAxis.
    # Note that PolarAxes uses these attributes as well, so that we have
    # 'x' <-> self.xaxis, containing a ThetaAxis. In particular we do not
    # have 'theta' in _axis_names.
    # In practice, this is ('x', 'y') for all 2D Axes and ('x', 'y', 'z')
    # for Axes3D.
    _axis_names = ("x", "y")
    _shared_axes = {name: cbook.Grouper() for name in _axis_names}
    _twinned_axes = cbook.Grouper()

    _subclass_uses_cla = False

    @property
    def _axis_map(self):
        """A mapping of axis names, e.g. 'x', to `Axis` instances."""
        return {name: getattr(self, f"{name}axis")
                for name in self._axis_names}

    def __str__(self):
        return "{0}({1[0]:g},{1[1]:g};{1[2]:g}x{1[3]:g})".format(
            type(self).__name__, self._position.bounds)

    def __init__(self, fig,
                 *args,
                 facecolor=None,  # defaults to rc axes.facecolor
                 frameon=True,
                 sharex=None,  # use Axes instance's xaxis info
                 sharey=None,  # use Axes instance's yaxis info
                 label='',
                 xscale=None,
                 yscale=None,
                 box_aspect=None,
                 **kwargs
                 ):
        """
        Build an Axes in a figure.

        Parameters
        ----------
        fig : `~matplotlib.figure.Figure`
            The Axes is built in the `.Figure` *fig*.

        *args
            ``*args`` can be a single ``(left, bottom, width, height)``
            rectangle or a single `.Bbox`.  This specifies the rectangle (in
            figure coordinates) where the Axes is positioned.

            ``*args`` can also consist of three numbers or a single three-digit
            number; in the latter case, the digits are considered as
            independent numbers.  The numbers are interpreted as ``(nrows,
            ncols, index)``: ``(nrows, ncols)`` specifies the size of an array
            of subplots, and ``index`` is the 1-based index of the subplot
            being created.  Finally, ``*args`` can also directly be a
            `.SubplotSpec` instance.

        sharex, sharey : `~matplotlib.axes.Axes`, optional
            The x- or y-`~.matplotlib.axis` is shared with the x- or y-axis in
            the input `~.axes.Axes`.

        frameon : bool, default: True
            Whether the Axes frame is visible.

        box_aspect : float, optional
            Set a fixed aspect for the Axes box, i.e. the ratio of height to
            width. See `~.axes.Axes.set_box_aspect` for details.

        **kwargs
            Other optional keyword arguments:

            %(Axes:kwdoc)s

        Returns
        -------
        `~.axes.Axes`
            The new `~.axes.Axes` object.
        """

        super().__init__()
        if "rect" in kwargs:
            if args:
                raise TypeError(
                    "'rect' cannot be used together with positional arguments")
            rect = kwargs.pop("rect")
            _api.check_isinstance((mtransforms.Bbox, Iterable), rect=rect)
            args = (rect,)
        subplotspec = None
        if len(args) == 1 and isinstance(args[0], mtransforms.Bbox):
            self._position = args[0]
        elif len(args) == 1 and np.iterable(args[0]):
            self._position = mtransforms.Bbox.from_bounds(*args[0])
        else:
            self._position = self._originalPosition = mtransforms.Bbox.unit()
            subplotspec = SubplotSpec._from_subplot_args(fig, args)
        if self._position.width < 0 or self._position.height < 0:
            raise ValueError('Width and height specified must be non-negative')
        self._originalPosition = self._position.frozen()
        self.axes = self
        self._aspect = 'auto'
        self._adjustable = 'box'
        self._anchor = 'C'
        self._stale_viewlims = {name: False for name in self._axis_names}
        self._sharex = sharex
        self._sharey = sharey
        self.set_label(label)
        self.set_figure(fig)
        # The subplotspec needs to be set after the figure (so that
        # figure-level subplotpars are taken into account), but the figure
        # needs to be set after self._position is initialized.
        if subplotspec:
            self.set_subplotspec(subplotspec)
        else:
            self._subplotspec = None
        self.set_box_aspect(box_aspect)
        self._axes_locator = None  # Optionally set via update(kwargs).

        self._children = []

        # placeholder for any colorbars added that use this Axes.
        # (see colorbar.py):
        self._colorbars = []
        self.spines = mspines.Spines.from_dict(self._gen_axes_spines())

        # this call may differ for non-sep axes, e.g., polar
        self._init_axis()
        if facecolor is None:
            facecolor = mpl.rcParams['axes.facecolor']
        self._facecolor = facecolor
        self._frameon = frameon
        self.set_axisbelow(mpl.rcParams['axes.axisbelow'])

        self._rasterization_zorder = None
        self.clear()

        # funcs used to format x and y - fall back on major formatters
        self.fmt_xdata = None
        self.fmt_ydata = None

        self.set_navigate(True)
        self.set_navigate_mode(None)

        if xscale:
            self.set_xscale(xscale)
        if yscale:
            self.set_yscale(yscale)

        self._internal_update(kwargs)

        for name, axis in self._axis_map.items():
            axis.callbacks._connect_picklable(
                'units', self._unit_change_handler(name))

        rcParams = mpl.rcParams
        self.tick_params(
            top=rcParams['xtick.top'] and rcParams['xtick.minor.top'],
            bottom=rcParams['xtick.bottom'] and rcParams['xtick.minor.bottom'],
            labeltop=(rcParams['xtick.labeltop'] and
                      rcParams['xtick.minor.top']),
            labelbottom=(rcParams['xtick.labelbottom'] and
                         rcParams['xtick.minor.bottom']),
            left=rcParams['ytick.left'] and rcParams['ytick.minor.left'],
            right=rcParams['ytick.right'] and rcParams['ytick.minor.right'],
            labelleft=(rcParams['ytick.labelleft'] and
                       rcParams['ytick.minor.left']),
            labelright=(rcParams['ytick.labelright'] and
                        rcParams['ytick.minor.right']),
            which='minor')

        self.tick_params(
            top=rcParams['xtick.top'] and rcParams['xtick.major.top'],
            bottom=rcParams['xtick.bottom'] and rcParams['xtick.major.bottom'],
            labeltop=(rcParams['xtick.labeltop'] and
                      rcParams['xtick.major.top']),
            labelbottom=(rcParams['xtick.labelbottom'] and
                         rcParams['xtick.major.bottom']),
            left=rcParams['ytick.left'] and rcParams['ytick.major.left'],
            right=rcParams['ytick.right'] and rcParams['ytick.major.right'],
            labelleft=(rcParams['ytick.labelleft'] and
                       rcParams['ytick.major.left']),
            labelright=(rcParams['ytick.labelright'] and
                        rcParams['ytick.major.right']),
            which='major')

    def __init_subclass__(cls, **kwargs):
        parent_uses_cla = super(cls, cls)._subclass_uses_cla
        if 'cla' in cls.__dict__:
            _api.warn_deprecated(
                '3.6',
                pending=True,
                message=f'Overriding `Axes.cla` in {cls.__qualname__} is '
                'pending deprecation in %(since)s and will be fully '
                'deprecated in favor of `Axes.clear` in the future. '
                'Please report '
                f'this to the {cls.__module__!r} author.')
        cls._subclass_uses_cla = 'cla' in cls.__dict__ or parent_uses_cla
        super().__init_subclass__(**kwargs)

    def __getstate__(self):
        state = super().__getstate__()
        # Prune the sharing & twinning info to only contain the current group.
        state["_shared_axes"] = {
            name: self._shared_axes[name].get_siblings(self)
            for name in self._axis_names if self in self._shared_axes[name]}
        state["_twinned_axes"] = (self._twinned_axes.get_siblings(self)
                                  if self in self._twinned_axes else None)
        return state

    def __setstate__(self, state):
        # Merge the grouping info back into the global groupers.
        shared_axes = state.pop("_shared_axes")
        for name, shared_siblings in shared_axes.items():
            self._shared_axes[name].join(*shared_siblings)
        twinned_siblings = state.pop("_twinned_axes")
        if twinned_siblings:
            self._twinned_axes.join(*twinned_siblings)
        self.__dict__ = state
        self._stale = True

    def __repr__(self):
        fields = []
        if self.get_label():
            fields += [f"label={self.get_label()!r}"]
        if hasattr(self, "get_title"):
            titles = {}
            for k in ["left", "center", "right"]:
                title = self.get_title(loc=k)
                if title:
                    titles[k] = title
            if titles:
                fields += [f"title={titles}"]
        for name, axis in self._axis_map.items():
            if axis.get_label() and axis.get_label().get_text():
                fields += [f"{name}label={axis.get_label().get_text()!r}"]
        return f"<{self.__class__.__name__}: " + ", ".join(fields) + ">"

    def get_subplotspec(self):
        """Return the `.SubplotSpec` associated with the subplot, or None."""
        return self._subplotspec

    def set_subplotspec(self, subplotspec):
        """Set the `.SubplotSpec`. associated with the subplot."""
        self._subplotspec = subplotspec
        self._set_position(subplotspec.get_position(self.figure))

    def get_gridspec(self):
        """Return the `.GridSpec` associated with the subplot, or None."""
        return self._subplotspec.get_gridspec() if self._subplotspec else None

    def get_window_extent(self, renderer=None):
        """
        Return the Axes bounding box in display space.

        This bounding box does not include the spines, ticks, ticklabels,
        or other labels.  For a bounding box including these elements use
        `~matplotlib.axes.Axes.get_tightbbox`.

        See Also
        --------
        matplotlib.axes.Axes.get_tightbbox
        matplotlib.axis.Axis.get_tightbbox
        matplotlib.spines.Spine.get_window_extent
        """
        return self.bbox

    def _init_axis(self):
        # This is moved out of __init__ because non-separable axes don't use it
        self.xaxis = maxis.XAxis(self, clear=False)
        self.spines.bottom.register_axis(self.xaxis)
        self.spines.top.register_axis(self.xaxis)
        self.yaxis = maxis.YAxis(self, clear=False)
        self.spines.left.register_axis(self.yaxis)
        self.spines.right.register_axis(self.yaxis)

    def set_figure(self, fig):
        # docstring inherited
        super().set_figure(fig)

        self.bbox = mtransforms.TransformedBbox(self._position,
                                                fig.transSubfigure)
        # these will be updated later as data is added
        self.dataLim = mtransforms.Bbox.null()
        self._viewLim = mtransforms.Bbox.unit()
        self.transScale = mtransforms.TransformWrapper(
            mtransforms.IdentityTransform())

        self._set_lim_and_transforms()

    def _unstale_viewLim(self):
        # We should arrange to store this information once per share-group
        # instead of on every axis.
        need_scale = {
            name: any(ax._stale_viewlims[name]
                      for ax in self._shared_axes[name].get_siblings(self))
            for name in self._axis_names}
        if any(need_scale.values()):
            for name in need_scale:
                for ax in self._shared_axes[name].get_siblings(self):
                    ax._stale_viewlims[name] = False
            self.autoscale_view(**{f"scale{name}": scale
                                   for name, scale in need_scale.items()})

    @property
    def viewLim(self):
        self._unstale_viewLim()
        return self._viewLim

    def _request_autoscale_view(self, axis="all", tight=None):
        """
        Mark a single axis, or all of them, as stale wrt. autoscaling.

        No computation is performed until the next autoscaling; thus, separate
        calls to control individual axises incur negligible performance cost.

        Parameters
        ----------
        axis : str, default: "all"
            Either an element of ``self._axis_names``, or "all".
        tight : bool or None, default: None
        """
        axis_names = _api.check_getitem(
            {**{k: [k] for k in self._axis_names}, "all": self._axis_names},
            axis=axis)
        for name in axis_names:
            self._stale_viewlims[name] = True
        if tight is not None:
            self._tight = tight

    def _set_lim_and_transforms(self):
        """
        Set the *_xaxis_transform*, *_yaxis_transform*, *transScale*,
        *transData*, *transLimits* and *transAxes* transformations.

        .. note::

            This method is primarily used by rectilinear projections of the
            `~matplotlib.axes.Axes` class, and is meant to be overridden by
            new kinds of projection Axes that need different transformations
            and limits. (See `~matplotlib.projections.polar.PolarAxes` for an
            example.)
        """
        self.transAxes = mtransforms.BboxTransformTo(self.bbox)

        # Transforms the x and y axis separately by a scale factor.
        # It is assumed that this part will have non-linear components
        # (e.g., for a log scale).
        self.transScale = mtransforms.TransformWrapper(
            mtransforms.IdentityTransform())

        # An affine transformation on the data, generally to limit the
        # range of the axes
        self.transLimits = mtransforms.BboxTransformFrom(
            mtransforms.TransformedBbox(self._viewLim, self.transScale))

        # The parentheses are important for efficiency here -- they
        # group the last two (which are usually affines) separately
        # from the first (which, with log-scaling can be non-affine).
        self.transData = self.transScale + (self.transLimits + self.transAxes)

        self._xaxis_transform = mtransforms.blended_transform_factory(
            self.transData, self.transAxes)
        self._yaxis_transform = mtransforms.blended_transform_factory(
            self.transAxes, self.transData)

    def get_xaxis_transform(self, which='grid'):
        """
        Get the transformation used for drawing x-axis labels, ticks
        and gridlines.  The x-direction is in data coordinates and the
        y-direction is in axis coordinates.

        .. note::

            This transformation is primarily used by the
            `~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        Parameters
        ----------
        which : {'grid', 'tick1', 'tick2'}
        """
        if which == 'grid':
            return self._xaxis_transform
        elif which == 'tick1':
            # for cartesian projection, this is bottom spine
            return self.spines.bottom.get_spine_transform()
        elif which == 'tick2':
            # for cartesian projection, this is top spine
            return self.spines.top.get_spine_transform()
        else:
            raise ValueError(f'unknown value for which: {which!r}')

    def get_xaxis_text1_transform(self, pad_points):
        """
        Returns
        -------
        transform : Transform
            The transform used for drawing x-axis labels, which will add
            *pad_points* of padding (in points) between the axis and the label.
            The x-direction is in data coordinates and the y-direction is in
            axis coordinates
        valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
            The text vertical alignment.
        halign : {'center', 'left', 'right'}
            The text horizontal alignment.

        Notes
        -----
        This transformation is primarily used by the `~matplotlib.axis.Axis`
        class, and is meant to be overridden by new kinds of projections that
        may need to place axis elements in different locations.
        """
        labels_align = mpl.rcParams["xtick.alignment"]
        return (self.get_xaxis_transform(which='tick1') +
                mtransforms.ScaledTranslation(0, -1 * pad_points / 72,
                                              self.figure.dpi_scale_trans),
                "top", labels_align)

    def get_xaxis_text2_transform(self, pad_points):
        """
        Returns
        -------
        transform : Transform
            The transform used for drawing secondary x-axis labels, which will
            add *pad_points* of padding (in points) between the axis and the
            label.  The x-direction is in data coordinates and the y-direction
            is in axis coordinates
        valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
            The text vertical alignment.
        halign : {'center', 'left', 'right'}
            The text horizontal alignment.

        Notes
        -----
        This transformation is primarily used by the `~matplotlib.axis.Axis`
        class, and is meant to be overridden by new kinds of projections that
        may need to place axis elements in different locations.
        """
        labels_align = mpl.rcParams["xtick.alignment"]
        return (self.get_xaxis_transform(which='tick2') +
                mtransforms.ScaledTranslation(0, pad_points / 72,
                                              self.figure.dpi_scale_trans),
                "bottom", labels_align)

    def get_yaxis_transform(self, which='grid'):
        """
        Get the transformation used for drawing y-axis labels, ticks
        and gridlines.  The x-direction is in axis coordinates and the
        y-direction is in data coordinates.

        .. note::

            This transformation is primarily used by the
            `~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        Parameters
        ----------
        which : {'grid', 'tick1', 'tick2'}
        """
        if which == 'grid':
            return self._yaxis_transform
        elif which == 'tick1':
            # for cartesian projection, this is bottom spine
            return self.spines.left.get_spine_transform()
        elif which == 'tick2':
            # for cartesian projection, this is top spine
            return self.spines.right.get_spine_transform()
        else:
            raise ValueError(f'unknown value for which: {which!r}')

    def get_yaxis_text1_transform(self, pad_points):
        """
        Returns
        -------
        transform : Transform
            The transform used for drawing y-axis labels, which will add
            *pad_points* of padding (in points) between the axis and the label.
            The x-direction is in axis coordinates and the y-direction is in
            data coordinates
        valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
            The text vertical alignment.
        halign : {'center', 'left', 'right'}
            The text horizontal alignment.

        Notes
        -----
        This transformation is primarily used by the `~matplotlib.axis.Axis`
        class, and is meant to be overridden by new kinds of projections that
        may need to place axis elements in different locations.
        """
        labels_align = mpl.rcParams["ytick.alignment"]
        return (self.get_yaxis_transform(which='tick1') +
                mtransforms.ScaledTranslation(-1 * pad_points / 72, 0,
                                              self.figure.dpi_scale_trans),
                labels_align, "right")

    def get_yaxis_text2_transform(self, pad_points):
        """
        Returns
        -------
        transform : Transform
            The transform used for drawing secondart y-axis labels, which will
            add *pad_points* of padding (in points) between the axis and the
            label.  The x-direction is in axis coordinates and the y-direction
            is in data coordinates
        valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
            The text vertical alignment.
        halign : {'center', 'left', 'right'}
            The text horizontal alignment.

        Notes
        -----
        This transformation is primarily used by the `~matplotlib.axis.Axis`
        class, and is meant to be overridden by new kinds of projections that
        may need to place axis elements in different locations.
        """
        labels_align = mpl.rcParams["ytick.alignment"]
        return (self.get_yaxis_transform(which='tick2') +
                mtransforms.ScaledTranslation(pad_points / 72, 0,
                                              self.figure.dpi_scale_trans),
                labels_align, "left")

    def _update_transScale(self):
        self.transScale.set(
            mtransforms.blended_transform_factory(
                self.xaxis.get_transform(), self.yaxis.get_transform()))

    def get_position(self, original=False):
        """
        Return the position of the Axes within the figure as a `.Bbox`.

        Parameters
        ----------
        original : bool
            If ``True``, return the original position. Otherwise, return the
            active position. For an explanation of the positions see
            `.set_position`.

        Returns
        -------
        `.Bbox`

        """
        if original:
            return self._originalPosition.frozen()
        else:
            locator = self.get_axes_locator()
            if not locator:
                self.apply_aspect()
            return self._position.frozen()

    def set_position(self, pos, which='both'):
        """
        Set the Axes position.

        Axes have two position attributes. The 'original' position is the
        position allocated for the Axes. The 'active' position is the
        position the Axes is actually drawn at. These positions are usually
        the same unless a fixed aspect is set to the Axes. See
        `.Axes.set_aspect` for details.

        Parameters
        ----------
        pos : [left, bottom, width, height] or `~matplotlib.transforms.Bbox`
            The new position of the Axes in `.Figure` coordinates.

        which : {'both', 'active', 'original'}, default: 'both'
            Determines which position variables to change.

        See Also
        --------
        matplotlib.transforms.Bbox.from_bounds
        matplotlib.transforms.Bbox.from_extents
        """
        self._set_position(pos, which=which)
        # because this is being called externally to the library we
        # don't let it be in the layout.
        self.set_in_layout(False)

    def _set_position(self, pos, which='both'):
        """
        Private version of set_position.

        Call this internally to get the same functionality of `set_position`,
        but not to take the axis out of the constrained_layout hierarchy.
        """
        if not isinstance(pos, mtransforms.BboxBase):
            pos = mtransforms.Bbox.from_bounds(*pos)
        for ax in self._twinned_axes.get_siblings(self):
            if which in ('both', 'active'):
                ax._position.set(pos)
            if which in ('both', 'original'):
                ax._originalPosition.set(pos)
        self.stale = True

    def reset_position(self):
        """
        Reset the active position to the original position.

        This undoes changes to the active position (as defined in
        `.set_position`) which may have been performed to satisfy fixed-aspect
        constraints.
        """
        for ax in self._twinned_axes.get_siblings(self):
            pos = ax.get_position(original=True)
            ax.set_position(pos, which='active')

    def set_axes_locator(self, locator):
        """
        Set the Axes locator.

        Parameters
        ----------
        locator : Callable[[Axes, Renderer], Bbox]
        """
        self._axes_locator = locator
        self.stale = True

    def get_axes_locator(self):
        """
        Return the axes_locator.
        """
        return self._axes_locator

    def _set_artist_props(self, a):
        """Set the boilerplate props for artists added to Axes."""
        a.set_figure(self.figure)
        if not a.is_transform_set():
            a.set_transform(self.transData)

        a.axes = self
        if a.get_mouseover():
            self._mouseover_set.add(a)

    def _gen_axes_patch(self):
        """
        Returns
        -------
        Patch
            The patch used to draw the background of the Axes.  It is also used
            as the clipping path for any data elements on the Axes.

            In the standard Axes, this is a rectangle, but in other projections
            it may not be.

        Notes
        -----
        Intended to be overridden by new projection types.
        """
        return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0)

    def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
        """
        Returns
        -------
        dict
            Mapping of spine names to `.Line2D` or `.Patch` instances that are
            used to draw Axes spines.

            In the standard Axes, spines are single line segments, but in other
            projections they may not be.

        Notes
        -----
        Intended to be overridden by new projection types.
        """
        return {side: mspines.Spine.linear_spine(self, side)
                for side in ['left', 'right', 'bottom', 'top']}

    def sharex(self, other):
        """
        Share the x-axis with *other*.

        This is equivalent to passing ``sharex=other`` when constructing the
        Axes, and cannot be used if the x-axis is already being shared with
        another Axes.
        """
        _api.check_isinstance(_AxesBase, other=other)
        if self._sharex is not None and other is not self._sharex:
            raise ValueError("x-axis is already shared")
        self._shared_axes["x"].join(self, other)
        self._sharex = other
        self.xaxis.major = other.xaxis.major  # Ticker instances holding
        self.xaxis.minor = other.xaxis.minor  # locator and formatter.
        x0, x1 = other.get_xlim()
        self.set_xlim(x0, x1, emit=False, auto=other.get_autoscalex_on())
        self.xaxis._scale = other.xaxis._scale

    def sharey(self, other):
        """
        Share the y-axis with *other*.

        This is equivalent to passing ``sharey=other`` when constructing the
        Axes, and cannot be used if the y-axis is already being shared with
        another Axes.
        """
        _api.check_isinstance(_AxesBase, other=other)
        if self._sharey is not None and other is not self._sharey:
            raise ValueError("y-axis is already shared")
        self._shared_axes["y"].join(self, other)
        self._sharey = other
        self.yaxis.major = other.yaxis.major  # Ticker instances holding
        self.yaxis.minor = other.yaxis.minor  # locator and formatter.
        y0, y1 = other.get_ylim()
        self.set_ylim(y0, y1, emit=False, auto=other.get_autoscaley_on())
        self.yaxis._scale = other.yaxis._scale

    def __clear(self):
        """Clear the Axes."""
        # The actual implementation of clear() as long as clear() has to be
        # an adapter delegating to the correct implementation.
        # The implementation can move back into clear() when the
        # deprecation on cla() subclassing expires.

        # stash the current visibility state
        if hasattr(self, 'patch'):
            patch_visible = self.patch.get_visible()
        else:
            patch_visible = True

        xaxis_visible = self.xaxis.get_visible()
        yaxis_visible = self.yaxis.get_visible()

        for axis in self._axis_map.values():
            axis.clear()  # Also resets the scale to linear.
        for spine in self.spines.values():
            spine._clear()  # Use _clear to not clear Axis again

        self.ignore_existing_data_limits = True
        self.callbacks = cbook.CallbackRegistry(
            signals=["xlim_changed", "ylim_changed", "zlim_changed"])

        # update the minor locator for x and y axis based on rcParams
        if mpl.rcParams['xtick.minor.visible']:
            self.xaxis.set_minor_locator(mticker.AutoMinorLocator())
        if mpl.rcParams['ytick.minor.visible']:
            self.yaxis.set_minor_locator(mticker.AutoMinorLocator())

        self._xmargin = mpl.rcParams['axes.xmargin']
        self._ymargin = mpl.rcParams['axes.ymargin']
        self._tight = None
        self._use_sticky_edges = True

        self._get_lines = _process_plot_var_args()
        self._get_patches_for_fill = _process_plot_var_args('fill')

        self._gridOn = mpl.rcParams['axes.grid']
        old_children, self._children = self._children, []
        for chld in old_children:
            chld.axes = chld.figure = None
        self._mouseover_set = _OrderedSet()
        self.child_axes = []
        self._current_image = None  # strictly for pyplot via _sci, _gci
        self._projection_init = None  # strictly for pyplot.subplot
        self.legend_ = None
        self.containers = []

        self.grid(False)  # Disable grid on init to use rcParameter
        self.grid(self._gridOn, which=mpl.rcParams['axes.grid.which'],
                  axis=mpl.rcParams['axes.grid.axis'])
        props = font_manager.FontProperties(
            size=mpl.rcParams['axes.titlesize'],
            weight=mpl.rcParams['axes.titleweight'])

        y = mpl.rcParams['axes.titley']
        if y is None:
            y = 1.0
            self._autotitlepos = True
        else:
            self._autotitlepos = False

        self.title = mtext.Text(
            x=0.5, y=y, text='',
            fontproperties=props,
            verticalalignment='baseline',
            horizontalalignment='center',
            )
        self._left_title = mtext.Text(
            x=0.0, y=y, text='',
            fontproperties=props.copy(),
            verticalalignment='baseline',
            horizontalalignment='left', )
        self._right_title = mtext.Text(
            x=1.0, y=y, text='',
            fontproperties=props.copy(),
            verticalalignment='baseline',
            horizontalalignment='right',
            )
        title_offset_points = mpl.rcParams['axes.titlepad']
        # refactor this out so it can be called in ax.set_title if
        # pad argument used...
        self._set_title_offset_trans(title_offset_points)

        for _title in (self.title, self._left_title, self._right_title):
            self._set_artist_props(_title)

        # The patch draws the background of the Axes.  We want this to be below
        # the other artists.  We use the frame to draw the edges so we are
        # setting the edgecolor to None.
        self.patch = self._gen_axes_patch()
        self.patch.set_figure(self.figure)
        self.patch.set_facecolor(self._facecolor)
        self.patch.set_edgecolor('none')
        self.patch.set_linewidth(0)
        self.patch.set_transform(self.transAxes)

        self.set_axis_on()

        self.xaxis.set_clip_path(self.patch)
        self.yaxis.set_clip_path(self.patch)

        if self._sharex is not None:
            self.xaxis.set_visible(xaxis_visible)
            self.patch.set_visible(patch_visible)
        if self._sharey is not None:
            self.yaxis.set_visible(yaxis_visible)
            self.patch.set_visible(patch_visible)

        # This comes last, as the call to _set_lim may trigger an autoscale (in
        # case of shared axes), requiring children to be already set up.
        for name, axis in self._axis_map.items():
            share = getattr(self, f"_share{name}")
            if share is not None:
                getattr(self, f"share{name}")(share)
            else:
                # Although the scale was set to linear as part of clear,
                # polar requires that _set_scale is called again
                if self.name == "polar":
                    axis._set_scale("linear")
                axis._set_lim(0, 1, auto=True)
        self._update_transScale()

        self.stale = True

    def clear(self):
        """Clear the Axes."""
        # Act as an alias, or as the superclass implementation depending on the
        # subclass implementation.
        if self._subclass_uses_cla:
            self.cla()
        else:
            self.__clear()

    def cla(self):
        """Clear the Axes."""
        # Act as an alias, or as the superclass implementation depending on the
        # subclass implementation.
        if self._subclass_uses_cla:
            self.__clear()
        else:
            self.clear()

    class ArtistList(Sequence):
        """
        A sublist of Axes children based on their type.

        The type-specific children sublists were made immutable in Matplotlib
        3.7.  In the future these artist lists may be replaced by tuples. Use
        as if this is a tuple already.
        """
        def __init__(self, axes, prop_name,
                     valid_types=None, invalid_types=None):
            """
            Parameters
            ----------
            axes : `~matplotlib.axes.Axes`
                The Axes from which this sublist will pull the children
                Artists.
            prop_name : str
                The property name used to access this sublist from the Axes;
                used to generate deprecation warnings.
            valid_types : list of type, optional
                A list of types that determine which children will be returned
                by this sublist. If specified, then the Artists in the sublist
                must be instances of any of these types. If unspecified, then
                any type of Artist is valid (unless limited by
                *invalid_types*.)
            invalid_types : tuple, optional
                A list of types that determine which children will *not* be
                returned by this sublist. If specified, then Artists in the
                sublist will never be an instance of these types. Otherwise, no
                types will be excluded.
            """
            self._axes = axes
            self._prop_name = prop_name
            self._type_check = lambda artist: (
                (not valid_types or isinstance(artist, valid_types)) and
                (not invalid_types or not isinstance(artist, invalid_types))
            )

        def __repr__(self):
            return f'<Axes.ArtistList of {len(self)} {self._prop_name}>'

        def __len__(self):
            return sum(self._type_check(artist)
                       for artist in self._axes._children)

        def __iter__(self):
            for artist in list(self._axes._children):
                if self._type_check(artist):
                    yield artist

        def __getitem__(self, key):
            return [artist
                    for artist in self._axes._children
                    if self._type_check(artist)][key]

        def __add__(self, other):
            if isinstance(other, (list, _AxesBase.ArtistList)):
                return [*self, *other]
            if isinstance(other, (tuple, _AxesBase.ArtistList)):
                return (*self, *other)
            return NotImplemented

        def __radd__(self, other):
            if isinstance(other, list):
                return other + list(self)
            if isinstance(other, tuple):
                return other + tuple(self)
            return NotImplemented

    @property
    def artists(self):
        return self.ArtistList(self, 'artists', invalid_types=(
            mcoll.Collection, mimage.AxesImage, mlines.Line2D, mpatches.Patch,
            mtable.Table, mtext.Text))

    @property
    def collections(self):
        return self.ArtistList(self, 'collections',
                               valid_types=mcoll.Collection)

    @property
    def images(self):
        return self.ArtistList(self, 'images', valid_types=mimage.AxesImage)

    @property
    def lines(self):
        return self.ArtistList(self, 'lines', valid_types=mlines.Line2D)

    @property
    def patches(self):
        return self.ArtistList(self, 'patches', valid_types=mpatches.Patch)

    @property
    def tables(self):
        return self.ArtistList(self, 'tables', valid_types=mtable.Table)

    @property
    def texts(self):
        return self.ArtistList(self, 'texts', valid_types=mtext.Text)

    def get_facecolor(self):
        """Get the facecolor of the Axes."""
        return self.patch.get_facecolor()

    def set_facecolor(self, color):
        """
        Set the facecolor of the Axes.

        Parameters
        ----------
        color : color
        """
        self._facecolor = color
        self.stale = True
        return self.patch.set_facecolor(color)

    def _set_title_offset_trans(self, title_offset_points):
        """
        Set the offset for the title either from :rc:`axes.titlepad`
        or from set_title kwarg ``pad``.
        """
        self.titleOffsetTrans = mtransforms.ScaledTranslation(
                0.0, title_offset_points / 72,
                self.figure.dpi_scale_trans)
        for _title in (self.title, self._left_title, self._right_title):
            _title.set_transform(self.transAxes + self.titleOffsetTrans)
            _title.set_clip_box(None)

    def set_prop_cycle(self, *args, **kwargs):
        """
        Set the property cycle of the Axes.

        The property cycle controls the style properties such as color,
        marker and linestyle of future plot commands. The style properties
        of data already added to the Axes are not modified.

        Call signatures::

          set_prop_cycle(cycler)
          set_prop_cycle(label=values[, label2=values2[, ...]])
          set_prop_cycle(label, values)

        Form 1 sets given `~cycler.Cycler` object.

        Form 2 creates a `~cycler.Cycler` which cycles over one or more
        properties simultaneously and set it as the property cycle of the
        Axes. If multiple properties are given, their value lists must have
        the same length. This is just a shortcut for explicitly creating a
        cycler and passing it to the function, i.e. it's short for
        ``set_prop_cycle(cycler(label=values label2=values2, ...))``.

        Form 3 creates a `~cycler.Cycler` for a single property and set it
        as the property cycle of the Axes. This form exists for compatibility
        with the original `cycler.cycler` interface. Its use is discouraged
        in favor of the kwarg form, i.e. ``set_prop_cycle(label=values)``.

        Parameters
        ----------
        cycler : `~cycler.Cycler`
            Set the given Cycler. *None* resets to the cycle defined by the
            current style.

            .. ACCEPTS: `~cycler.Cycler`

        label : str
            The property key. Must be a valid `.Artist` property.
            For example, 'color' or 'linestyle'. Aliases are allowed,
            such as 'c' for 'color' and 'lw' for 'linewidth'.

        values : iterable
            Finite-length iterable of the property values. These values
            are validated and will raise a ValueError if invalid.

        See Also
        --------
        matplotlib.rcsetup.cycler
            Convenience function for creating validated cyclers for properties.
        cycler.cycler
            The original function for creating unvalidated cyclers.

        Examples
        --------
        Setting the property cycle for a single property:

        >>> ax.set_prop_cycle(color=['red', 'green', 'blue'])

        Setting the property cycle for simultaneously cycling over multiple
        properties (e.g. red circle, green plus, blue cross):

        >>> ax.set_prop_cycle(color=['red', 'green', 'blue'],
        ...                   marker=['o', '+', 'x'])

        """
        if args and kwargs:
            raise TypeError("Cannot supply both positional and keyword "
                            "arguments to this method.")
        # Can't do `args == (None,)` as that crashes cycler.
        if len(args) == 1 and args[0] is None:
            prop_cycle = None
        else:
            prop_cycle = cycler(*args, **kwargs)
        self._get_lines.set_prop_cycle(prop_cycle)
        self._get_patches_for_fill.set_prop_cycle(prop_cycle)

    def get_aspect(self):
        """
        Return the aspect ratio of the axes scaling.

        This is either "auto" or a float giving the ratio of y/x-scale.
        """
        return self._aspect

    def set_aspect(self, aspect, adjustable=None, anchor=None, share=False):
        """
        Set the aspect ratio of the axes scaling, i.e. y/x-scale.

        Parameters
        ----------
        aspect : {'auto', 'equal'} or float
            Possible values:

            - 'auto': fill the position rectangle with data.
            - 'equal': same as ``aspect=1``, i.e. same scaling for x and y.
            - *float*: The displayed size of 1 unit in y-data coordinates will
              be *aspect* times the displayed size of 1 unit in x-data
              coordinates; e.g. for ``aspect=2`` a square in data coordinates
              will be rendered with a height of twice its width.

        adjustable : None or {'box', 'datalim'}, optional
            If not ``None``, this defines which parameter will be adjusted to
            meet the required aspect. See `.set_adjustable` for further
            details.

        anchor : None or str or (float, float), optional
            If not ``None``, this defines where the Axes will be drawn if there
            is extra space due to aspect constraints. The most common way
            to specify the anchor are abbreviations of cardinal directions:

            =====   =====================
            value   description
            =====   =====================
            'C'     centered
            'SW'    lower left corner
            'S'     middle of bottom edge
            'SE'    lower right corner
            etc.
            =====   =====================

            See `~.Axes.set_anchor` for further details.

        share : bool, default: False
            If ``True``, apply the settings to all shared Axes.

        See Also
        --------
        matplotlib.axes.Axes.set_adjustable
            Set how the Axes adjusts to achieve the required aspect ratio.
        matplotlib.axes.Axes.set_anchor
            Set the position in case of extra space.
        """
        if cbook._str_equal(aspect, 'equal'):
            aspect = 1
        if not cbook._str_equal(aspect, 'auto'):
            aspect = float(aspect)  # raise ValueError if necessary
            if aspect <= 0 or not np.isfinite(aspect):
                raise ValueError("aspect must be finite and positive ")

        if share:
            axes = {sibling for name in self._axis_names
                    for sibling in self._shared_axes[name].get_siblings(self)}
        else:
            axes = [self]

        for ax in axes:
            ax._aspect = aspect

        if adjustable is None:
            adjustable = self._adjustable
        self.set_adjustable(adjustable, share=share)  # Handle sharing.

        if anchor is not None:
            self.set_anchor(anchor, share=share)
        self.stale = True

    def get_adjustable(self):
        """
        Return whether the Axes will adjust its physical dimension ('box') or
        its data limits ('datalim') to achieve the desired aspect ratio.

        See Also
        --------
        matplotlib.axes.Axes.set_adjustable
            Set how the Axes adjusts to achieve the required aspect ratio.
        matplotlib.axes.Axes.set_aspect
            For a description of aspect handling.
        """
        return self._adjustable

    def set_adjustable(self, adjustable, share=False):
        """
        Set how the Axes adjusts to achieve the required aspect ratio.

        Parameters
        ----------
        adjustable : {'box', 'datalim'}
            If 'box', change the physical dimensions of the Axes.
            If 'datalim', change the ``x`` or ``y`` data limits.

        share : bool, default: False
            If ``True``, apply the settings to all shared Axes.

        See Also
        --------
        matplotlib.axes.Axes.set_aspect
            For a description of aspect handling.

        Notes
        -----
        Shared Axes (of which twinned Axes are a special case)
        impose restrictions on how aspect ratios can be imposed.
        For twinned Axes, use 'datalim'.  For Axes that share both
        x and y, use 'box'.  Otherwise, either 'datalim' or 'box'
        may be used.  These limitations are partly a requirement
        to avoid over-specification, and partly a result of the
        particular implementation we are currently using, in
        which the adjustments for aspect ratios are done sequentially
        and independently on each Axes as it is drawn.
        """
        _api.check_in_list(["box", "datalim"], adjustable=adjustable)
        if share:
            axs = {sibling for name in self._axis_names
                   for sibling in self._shared_axes[name].get_siblings(self)}
        else:
            axs = [self]
        if (adjustable == "datalim"
                and any(getattr(ax.get_data_ratio, "__func__", None)
                        != _AxesBase.get_data_ratio
                        for ax in axs)):
            # Limits adjustment by apply_aspect assumes that the axes' aspect
            # ratio can be computed from the data limits and scales.
            raise ValueError("Cannot set Axes adjustable to 'datalim' for "
                             "Axes which override 'get_data_ratio'")
        for ax in axs:
            ax._adjustable = adjustable
        self.stale = True

    def get_box_aspect(self):
        """
        Return the Axes box aspect, i.e. the ratio of height to width.

        The box aspect is ``None`` (i.e. chosen depending on the available
        figure space) unless explicitly specified.

        See Also
        --------
        matplotlib.axes.Axes.set_box_aspect
            for a description of box aspect.
        matplotlib.axes.Axes.set_aspect
            for a description of aspect handling.
        """
        return self._box_aspect

    def set_box_aspect(self, aspect=None):
        """
        Set the Axes box aspect, i.e. the ratio of height to width.

        This defines the aspect of the Axes in figure space and is not to be
        confused with the data aspect (see `~.Axes.set_aspect`).

        Parameters
        ----------
        aspect : float or None
            Changes the physical dimensions of the Axes, such that the ratio
            of the Axes height to the Axes width in physical units is equal to
            *aspect*. Defining a box aspect will change the *adjustable*
            property to 'datalim' (see `~.Axes.set_adjustable`).

            *None* will disable a fixed box aspect so that height and width
            of the Axes are chosen independently.

        See Also
        --------
        matplotlib.axes.Axes.set_aspect
            for a description of aspect handling.
        """
        axs = {*self._twinned_axes.get_siblings(self),
               *self._twinned_axes.get_siblings(self)}

        if aspect is not None:
            aspect = float(aspect)
            # when box_aspect is set to other than ´None`,
            # adjustable must be "datalim"
            for ax in axs:
                ax.set_adjustable("datalim")

        for ax in axs:
            ax._box_aspect = aspect
            ax.stale = True

    def get_anchor(self):
        """
        Get the anchor location.

        See Also
        --------
        matplotlib.axes.Axes.set_anchor
            for a description of the anchor.
        matplotlib.axes.Axes.set_aspect
            for a description of aspect handling.
        """
        return self._anchor

    def set_anchor(self, anchor, share=False):
        """
        Define the anchor location.

        The actual drawing area (active position) of the Axes may be smaller
        than the Bbox (original position) when a fixed aspect is required. The
        anchor defines where the drawing area will be located within the
        available space.

        Parameters
        ----------
        anchor : (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', ...}
            Either an (*x*, *y*) pair of relative coordinates (0 is left or
            bottom, 1 is right or top), 'C' (center), or a cardinal direction
            ('SW', southwest, is bottom left, etc.).  str inputs are shorthands
            for (*x*, *y*) coordinates, as shown in the following diagram::

               ┌─────────────────┬─────────────────┬─────────────────┐
               │ 'NW' (0.0, 1.0) │ 'N' (0.5, 1.0)  │ 'NE' (1.0, 1.0) │
               ├─────────────────┼─────────────────┼─────────────────┤
               │ 'W'  (0.0, 0.5) │ 'C' (0.5, 0.5)  │ 'E'  (1.0, 0.5) │
               ├─────────────────┼─────────────────┼─────────────────┤
               │ 'SW' (0.0, 0.0) │ 'S' (0.5, 0.0)  │ 'SE' (1.0, 0.0) │
               └─────────────────┴─────────────────┴─────────────────┘

        share : bool, default: False
            If ``True``, apply the settings to all shared Axes.

        See Also
        --------
        matplotlib.axes.Axes.set_aspect
            for a description of aspect handling.
        """
        if not (anchor in mtransforms.Bbox.coefs or len(anchor) == 2):
            raise ValueError('argument must be among %s' %
                             ', '.join(mtransforms.Bbox.coefs))
        if share:
            axes = {sibling for name in self._axis_names
                    for sibling in self._shared_axes[name].get_siblings(self)}
        else:
            axes = [self]
        for ax in axes:
            ax._anchor = anchor

        self.stale = True

    def get_data_ratio(self):
        """
        Return the aspect ratio of the scaled data.

        Notes
        -----
        This method is intended to be overridden by new projection types.
        """
        txmin, txmax = self.xaxis.get_transform().transform(self.get_xbound())
        tymin, tymax = self.yaxis.get_transform().transform(self.get_ybound())
        xsize = max(abs(txmax - txmin), 1e-30)
        ysize = max(abs(tymax - tymin), 1e-30)
        return ysize / xsize

    def apply_aspect(self, position=None):
        """
        Adjust the Axes for a specified data aspect ratio.

        Depending on `.get_adjustable` this will modify either the
        Axes box (position) or the view limits. In the former case,
        `~matplotlib.axes.Axes.get_anchor` will affect the position.

        Parameters
        ----------
        position : None or .Bbox
            If not ``None``, this defines the position of the
            Axes within the figure as a Bbox. See `~.Axes.get_position`
            for further details.

        Notes
        -----
        This is called automatically when each Axes is drawn.  You may need
        to call it yourself if you need to update the Axes position and/or
        view limits before the Figure is drawn.

        See Also
        --------
        matplotlib.axes.Axes.set_aspect
            For a description of aspect ratio handling.
        matplotlib.axes.Axes.set_adjustable
            Set how the Axes adjusts to achieve the required aspect ratio.
        matplotlib.axes.Axes.set_anchor
            Set the position in case of extra space.
        """
        if position is None:
            position = self.get_position(original=True)

        aspect = self.get_aspect()

        if aspect == 'auto' and self._box_aspect is None:
            self._set_position(position, which='active')
            return

        trans = self.get_figure().transSubfigure
        bb = mtransforms.Bbox.unit().transformed(trans)
        # this is the physical aspect of the panel (or figure):
        fig_aspect = bb.height / bb.width

        if self._adjustable == 'box':
            if self in self._twinned_axes:
                raise RuntimeError("Adjustable 'box' is not allowed in a "
                                   "twinned Axes; use 'datalim' instead")
            box_aspect = aspect * self.get_data_ratio()
            pb = position.frozen()
            pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
            self._set_position(pb1.anchored(self.get_anchor(), pb), 'active')
            return

        # The following is only seen if self._adjustable == 'datalim'
        if self._box_aspect is not None:
            pb = position.frozen()
            pb1 = pb.shrunk_to_aspect(self._box_aspect, pb, fig_aspect)
            self._set_position(pb1.anchored(self.get_anchor(), pb), 'active')
            if aspect == "auto":
                return

        # reset active to original in case it had been changed by prior use
        # of 'box'
        if self._box_aspect is None:
            self._set_position(position, which='active')
        else:
            position = pb1.anchored(self.get_anchor(), pb)

        x_trf = self.xaxis.get_transform()
        y_trf = self.yaxis.get_transform()
        xmin, xmax = x_trf.transform(self.get_xbound())
        ymin, ymax = y_trf.transform(self.get_ybound())
        xsize = max(abs(xmax - xmin), 1e-30)
        ysize = max(abs(ymax - ymin), 1e-30)

        box_aspect = fig_aspect * (position.height / position.width)
        data_ratio = box_aspect / aspect

        y_expander = data_ratio * xsize / ysize - 1
        # If y_expander > 0, the dy/dx viewLim ratio needs to increase
        if abs(y_expander) < 0.005:
            return

        dL = self.dataLim
        x0, x1 = x_trf.transform(dL.intervalx)
        y0, y1 = y_trf.transform(dL.intervaly)
        xr = 1.05 * (x1 - x0)
        yr = 1.05 * (y1 - y0)

        xmarg = xsize - xr
        ymarg = ysize - yr
        Ysize = data_ratio * xsize
        Xsize = ysize / data_ratio
        Xmarg = Xsize - xr
        Ymarg = Ysize - yr
        # Setting these targets to, e.g., 0.05*xr does not seem to help.
        xm = 0
        ym = 0

        shared_x = self in self._shared_axes["x"]
        shared_y = self in self._shared_axes["y"]

        if shared_x and shared_y:
            raise RuntimeError("set_aspect(..., adjustable='datalim') or "
                               "axis('equal') are not allowed when both axes "
                               "are shared.  Try set_aspect(..., "
                               "adjustable='box').")

        # If y is shared, then we are only allowed to change x, etc.
        if shared_y:
            adjust_y = False
        else:
            if xmarg > xm and ymarg > ym:
                adjy = ((Ymarg > 0 and y_expander < 0) or
                        (Xmarg < 0 and y_expander > 0))
            else:
                adjy = y_expander > 0
            adjust_y = shared_x or adjy  # (Ymarg > xmarg)

        if adjust_y:
            yc = 0.5 * (ymin + ymax)
            y0 = yc - Ysize / 2.0
            y1 = yc + Ysize / 2.0
            self.set_ybound(y_trf.inverted().transform([y0, y1]))
        else:
            xc = 0.5 * (xmin + xmax)
            x0 = xc - Xsize / 2.0
            x1 = xc + Xsize / 2.0
            self.set_xbound(x_trf.inverted().transform([x0, x1]))

    def axis(self, arg=None, /, *, emit=True, **kwargs):
        """
        Convenience method to get or set some axis properties.

        Call signatures::

          xmin, xmax, ymin, ymax = axis()
          xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
          xmin, xmax, ymin, ymax = axis(option)
          xmin, xmax, ymin, ymax = axis(**kwargs)

        Parameters
        ----------
        xmin, xmax, ymin, ymax : float, optional
            The axis limits to be set.  This can also be achieved using ::

                ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

        option : bool or str
            If a bool, turns axis lines and labels on or off. If a string,
            possible values are:

            ================ ===========================================================
            Value            Description
            ================ ===========================================================
            'off' or `False` Hide all axis decorations, i.e. axis labels, spines,
                             tick marks, tick labels, and grid lines.
                             This is the same as `~.Axes.set_axis_off()`.
            'on' or `True`   Do not hide all axis decorations, i.e. axis labels, spines,
                             tick marks, tick labels, and grid lines.
                             This is the same as `~.Axes.set_axis_on()`.
            'equal'          Set equal scaling (i.e., make circles circular) by
                             changing the axis limits. This is the same as
                             ``ax.set_aspect('equal', adjustable='datalim')``.
                             Explicit data limits may not be respected in this case.
            'scaled'         Set equal scaling (i.e., make circles circular) by
                             changing dimensions of the plot box. This is the same as
                             ``ax.set_aspect('equal', adjustable='box', anchor='C')``.
                             Additionally, further autoscaling will be disabled.
            'tight'          Set limits just large enough to show all data, then
                             disable further autoscaling.
            'auto'           Automatic scaling (fill plot box with data).
            'image'          'scaled' with axis limits equal to data limits.
            'square'         Square plot; similar to 'scaled', but initially forcing
                             ``xmax-xmin == ymax-ymin``.
            ================ ===========================================================

        emit : bool, default: True
            Whether observers are notified of the axis limit change.
            This option is passed on to `~.Axes.set_xlim` and
            `~.Axes.set_ylim`.

        Returns
        -------
        xmin, xmax, ymin, ymax : float
            The axis limits.

        See Also
        --------
        matplotlib.axes.Axes.set_xlim
        matplotlib.axes.Axes.set_ylim

        Notes
        -----
        For 3D axes, this method additionally takes *zmin*, *zmax* as
        parameters and likewise returns them.
        """
        if isinstance(arg, (str, bool)):
            if arg is True:
                arg = 'on'
            if arg is False:
                arg = 'off'
            arg = arg.lower()
            if arg == 'on':
                self.set_axis_on()
            elif arg == 'off':
                self.set_axis_off()
            elif arg in [
                    'equal', 'tight', 'scaled', 'auto', 'image', 'square']:
                self.set_autoscale_on(True)
                self.set_aspect('auto')
                self.autoscale_view(tight=False)
                if arg == 'equal':
                    self.set_aspect('equal', adjustable='datalim')
                elif arg == 'scaled':
                    self.set_aspect('equal', adjustable='box', anchor='C')
                    self.set_autoscale_on(False)  # Req. by Mark Bakker
                elif arg == 'tight':
                    self.autoscale_view(tight=True)
                    self.set_autoscale_on(False)
                elif arg == 'image':
                    self.autoscale_view(tight=True)
                    self.set_autoscale_on(False)
                    self.set_aspect('equal', adjustable='box', anchor='C')
                elif arg == 'square':
                    self.set_aspect('equal', adjustable='box', anchor='C')
                    self.set_autoscale_on(False)
                    xlim = self.get_xlim()
                    ylim = self.get_ylim()
                    edge_size = max(np.diff(xlim), np.diff(ylim))[0]
                    self.set_xlim([xlim[0], xlim[0] + edge_size],
                                  emit=emit, auto=False)
                    self.set_ylim([ylim[0], ylim[0] + edge_size],
                                  emit=emit, auto=False)
            else:
                raise ValueError(f"Unrecognized string {arg!r} to axis; "
                                 "try 'on' or 'off'")
        else:
            if arg is not None:
                if len(arg) != 2*len(self._axis_names):
                    raise TypeError(
                        "The first argument to axis() must be an iterable of the form "
                        "[{}]".format(", ".join(
                            f"{name}min, {name}max" for name in self._axis_names)))
                limits = {
                    name: arg[2*i:2*(i+1)]
                    for i, name in enumerate(self._axis_names)
                }
            else:
                limits = {}
                for name in self._axis_names:
                    ax_min = kwargs.pop(f'{name}min', None)
                    ax_max = kwargs.pop(f'{name}max', None)
                    limits[name] = (ax_min, ax_max)
            for name, (ax_min, ax_max) in limits.items():
                ax_auto = (None  # Keep autoscale state as is.
                           if ax_min is None and ax_max is None
                           else False)  # Turn off autoscale.
                set_ax_lim = getattr(self, f'set_{name}lim')
                set_ax_lim(ax_min, ax_max, emit=emit, auto=ax_auto)
        if kwargs:
            raise _api.kwarg_error("axis", kwargs)
        lims = ()
        for name in self._axis_names:
            get_ax_lim = getattr(self, f'get_{name}lim')
            lims += get_ax_lim()
        return lims

    def get_legend(self):
        """Return the `.Legend` instance, or None if no legend is defined."""
        return self.legend_

    def get_images(self):
        r"""Return a list of `.AxesImage`\s contained by the Axes."""
        return cbook.silent_list('AxesImage', self.images)

    def get_lines(self):
        """Return a list of lines contained by the Axes."""
        return cbook.silent_list('Line2D', self.lines)

    def get_xaxis(self):
        """
        [*Discouraged*] Return the XAxis instance.

        .. admonition:: Discouraged

            The use of this function is discouraged. You should instead
            directly access the attribute ``ax.xaxis``.
        """
        return self.xaxis

    def get_yaxis(self):
        """
        [*Discouraged*] Return the YAxis instance.

        .. admonition:: Discouraged

            The use of this function is discouraged. You should instead
            directly access the attribute ``ax.yaxis``.
        """
        return self.yaxis

    get_xgridlines = _axis_method_wrapper("xaxis", "get_gridlines")
    get_xticklines = _axis_method_wrapper("xaxis", "get_ticklines")
    get_ygridlines = _axis_method_wrapper("yaxis", "get_gridlines")
    get_yticklines = _axis_method_wrapper("yaxis", "get_ticklines")

    # Adding and tracking artists

    def _sci(self, im):
        """
        Set the current image.

        This image will be the target of colormap functions like
        ``pyplot.viridis``, and other functions such as `~.pyplot.clim`.  The
        current image is an attribute of the current Axes.
        """
        _api.check_isinstance((mcoll.Collection, mimage.AxesImage), im=im)
        if im not in self._children:
            raise ValueError("Argument must be an image or collection in this Axes")
        self._current_image = im

    def _gci(self):
        """Helper for `~matplotlib.pyplot.gci`; do not use elsewhere."""
        return self._current_image

    def has_data(self):
        """
        Return whether any artists have been added to the Axes.

        This should not be used to determine whether the *dataLim*
        need to be updated, and may not actually be useful for
        anything.
        """
        return any(isinstance(a, (mcoll.Collection, mimage.AxesImage,
                                  mlines.Line2D, mpatches.Patch))
                   for a in self._children)

    def add_artist(self, a):
        """
        Add an `.Artist` to the Axes; return the artist.

        Use `add_artist` only for artists for which there is no dedicated
        "add" method; and if necessary, use a method such as `update_datalim`
        to manually update the dataLim if the artist is to be included in
        autoscaling.

        If no ``transform`` has been specified when creating the artist (e.g.
        ``artist.get_transform() == None``) then the transform is set to
        ``ax.transData``.
        """
        a.axes = self
        self._children.append(a)
        a._remove_method = self._children.remove
        self._set_artist_props(a)
        if a.get_clip_path() is None:
            a.set_clip_path(self.patch)
        self.stale = True
        return a

    def add_child_axes(self, ax):
        """
        Add an `.AxesBase` to the Axes' children; return the child Axes.

        This is the lowlevel version.  See `.axes.Axes.inset_axes`.
        """

        # normally Axes have themselves as the Axes, but these need to have
        # their parent...
        # Need to bypass the getter...
        ax._axes = self
        ax.stale_callback = martist._stale_axes_callback

        self.child_axes.append(ax)
        ax._remove_method = functools.partial(
            self.figure._remove_axes, owners=[self.child_axes])
        self.stale = True
        return ax

    def add_collection(self, collection, autolim=True):
        """
        Add a `.Collection` to the Axes; return the collection.
        """
        _api.check_isinstance(mcoll.Collection, collection=collection)
        if not collection.get_label():
            collection.set_label(f'_child{len(self._children)}')
        self._children.append(collection)
        collection._remove_method = self._children.remove
        self._set_artist_props(collection)

        if collection.get_clip_path() is None:
            collection.set_clip_path(self.patch)

        if autolim:
            # Make sure viewLim is not stale (mostly to match
            # pre-lazy-autoscale behavior, which is not really better).
            self._unstale_viewLim()
            datalim = collection.get_datalim(self.transData)
            points = datalim.get_points()
            if not np.isinf(datalim.minpos).all():
                # By definition, if minpos (minimum positive value) is set
                # (i.e., non-inf), then min(points) <= minpos <= max(points),
                # and minpos would be superfluous. However, we add minpos to
                # the call so that self.dataLim will update its own minpos.
                # This ensures that log scales see the correct minimum.
                points = np.concatenate([points, [datalim.minpos]])
            self.update_datalim(points)

        self.stale = True
        return collection

    def add_image(self, image):
        """
        Add an `.AxesImage` to the Axes; return the image.
        """
        _api.check_isinstance(mimage.AxesImage, image=image)
        self._set_artist_props(image)
        if not image.get_label():
            image.set_label(f'_child{len(self._children)}')
        self._children.append(image)
        image._remove_method = self._children.remove
        self.stale = True
        return image

    def _update_image_limits(self, image):
        xmin, xmax, ymin, ymax = image.get_extent()
        self.axes.update_datalim(((xmin, ymin), (xmax, ymax)))

    def add_line(self, line):
        """
        Add a `.Line2D` to the Axes; return the line.
        """
        _api.check_isinstance(mlines.Line2D, line=line)
        self._set_artist_props(line)
        if line.get_clip_path() is None:
            line.set_clip_path(self.patch)

        self._update_line_limits(line)
        if not line.get_label():
            line.set_label(f'_child{len(self._children)}')
        self._children.append(line)
        line._remove_method = self._children.remove
        self.stale = True
        return line

    def _add_text(self, txt):
        """
        Add a `.Text` to the Axes; return the text.
        """
        _api.check_isinstance(mtext.Text, txt=txt)
        self._set_artist_props(txt)
        self._children.append(txt)
        txt._remove_method = self._children.remove
        self.stale = True
        return txt

    def _update_line_limits(self, line):
        """
        Figures out the data limit of the given line, updating self.dataLim.
        """
        path = line.get_path()
        if path.vertices.size == 0:
            return

        line_trf = line.get_transform()

        if line_trf == self.transData:
            data_path = path
        elif any(line_trf.contains_branch_seperately(self.transData)):
            # Compute the transform from line coordinates to data coordinates.
            trf_to_data = line_trf - self.transData
            # If transData is affine we can use the cached non-affine component
            # of line's path (since the non-affine part of line_trf is
            # entirely encapsulated in trf_to_data).
            if self.transData.is_affine:
                line_trans_path = line._get_transformed_path()
                na_path, _ = line_trans_path.get_transformed_path_and_affine()
                data_path = trf_to_data.transform_path_affine(na_path)
            else:
                data_path = trf_to_data.transform_path(path)
        else:
            # For backwards compatibility we update the dataLim with the
            # coordinate range of the given path, even though the coordinate
            # systems are completely different. This may occur in situations
            # such as when ax.transAxes is passed through for absolute
            # positioning.
            data_path = path

        if not data_path.vertices.size:
            return

        updatex, updatey = line_trf.contains_branch_seperately(self.transData)
        if self.name != "rectilinear":
            # This block is mostly intended to handle axvline in polar plots,
            # for which updatey would otherwise be True.
            if updatex and line_trf == self.get_yaxis_transform():
                updatex = False
            if updatey and line_trf == self.get_xaxis_transform():
                updatey = False
        self.dataLim.update_from_path(data_path,
                                      self.ignore_existing_data_limits,
                                      updatex=updatex, updatey=updatey)
        self.ignore_existing_data_limits = False

    def add_patch(self, p):
        """
        Add a `.Patch` to the Axes; return the patch.
        """
        _api.check_isinstance(mpatches.Patch, p=p)
        self._set_artist_props(p)
        if p.get_clip_path() is None:
            p.set_clip_path(self.patch)
        self._update_patch_limits(p)
        self._children.append(p)
        p._remove_method = self._children.remove
        return p

    def _update_patch_limits(self, patch):
        """Update the data limits for the given patch."""
        # hist can add zero height Rectangles, which is useful to keep
        # the bins, counts and patches lined up, but it throws off log
        # scaling.  We'll ignore rects with zero height or width in
        # the auto-scaling

        # cannot check for '==0' since unitized data may not compare to zero
        # issue #2150 - we update the limits if patch has non zero width
        # or height.
        if (isinstance(patch, mpatches.Rectangle) and
                ((not patch.get_width()) and (not patch.get_height()))):
            return
        p = patch.get_path()
        # Get all vertices on the path
        # Loop through each segment to get extrema for Bezier curve sections
        vertices = []
        for curve, code in p.iter_bezier(simplify=False):
            # Get distance along the curve of any extrema
            _, dzeros = curve.axis_aligned_extrema()
            # Calculate vertices of start, end and any extrema in between
            vertices.append(curve([0, *dzeros, 1]))

        if len(vertices):
            vertices = np.vstack(vertices)

        patch_trf = patch.get_transform()
        updatex, updatey = patch_trf.contains_branch_seperately(self.transData)
        if not (updatex or updatey):
            return
        if self.name != "rectilinear":
            # As in _update_line_limits, but for axvspan.
            if updatex and patch_trf == self.get_yaxis_transform():
                updatex = False
            if updatey and patch_trf == self.get_xaxis_transform():
                updatey = False
        trf_to_data = patch_trf - self.transData
        xys = trf_to_data.transform(vertices)
        self.update_datalim(xys, updatex=updatex, updatey=updatey)

    def add_table(self, tab):
        """
        Add a `.Table` to the Axes; return the table.
        """
        _api.check_isinstance(mtable.Table, tab=tab)
        self._set_artist_props(tab)
        self._children.append(tab)
        if tab.get_clip_path() is None:
            tab.set_clip_path(self.patch)
        tab._remove_method = self._children.remove
        return tab

    def add_container(self, container):
        """
        Add a `.Container` to the Axes' containers; return the container.
        """
        label = container.get_label()
        if not label:
            container.set_label('_container%d' % len(self.containers))
        self.containers.append(container)
        container._remove_method = self.containers.remove
        return container

    def _unit_change_handler(self, axis_name, event=None):
        """
        Process axis units changes: requests updates to data and view limits.
        """
        if event is None:  # Allow connecting `self._unit_change_handler(name)`
            return functools.partial(
                self._unit_change_handler, axis_name, event=object())
        _api.check_in_list(self._axis_map, axis_name=axis_name)
        for line in self.lines:
            line.recache_always()
        self.relim()
        self._request_autoscale_view(axis_name)

    def relim(self, visible_only=False):
        """
        Recompute the data limits based on current artists.

        At present, `.Collection` instances are not supported.

        Parameters
        ----------
        visible_only : bool, default: False
            Whether to exclude invisible artists.
        """
        # Collections are deliberately not supported (yet); see
        # the TODO note in artists.py.
        self.dataLim.ignore(True)
        self.dataLim.set_points(mtransforms.Bbox.null().get_points())
        self.ignore_existing_data_limits = True

        for artist in self._children:
            if not visible_only or artist.get_visible():
                if isinstance(artist, mlines.Line2D):
                    self._update_line_limits(artist)
                elif isinstance(artist, mpatches.Patch):
                    self._update_patch_limits(artist)
                elif isinstance(artist, mimage.AxesImage):
                    self._update_image_limits(artist)

    def update_datalim(self, xys, updatex=True, updatey=True):
        """
        Extend the `~.Axes.dataLim` Bbox to include the given points.

        If no data is set currently, the Bbox will ignore its limits and set
        the bound to be the bounds of the xydata (*xys*). Otherwise, it will
        compute the bounds of the union of its current data and the data in
        *xys*.

        Parameters
        ----------
        xys : 2D array-like
            The points to include in the data limits Bbox. This can be either
            a list of (x, y) tuples or a (N, 2) array.

        updatex, updatey : bool, default: True
            Whether to update the x/y limits.
        """
        xys = np.asarray(xys)
        if not np.any(np.isfinite(xys)):
            return
        self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits,
                                         updatex=updatex, updatey=updatey)
        self.ignore_existing_data_limits = False

    def _process_unit_info(self, datasets=None, kwargs=None, *, convert=True):
        """
        Set axis units based on *datasets* and *kwargs*, and optionally apply
        unit conversions to *datasets*.

        Parameters
        ----------
        datasets : list
            List of (axis_name, dataset) pairs (where the axis name is defined
            as in `._axis_map`).  Individual datasets can also be None
            (which gets passed through).
        kwargs : dict
            Other parameters from which unit info (i.e., the *xunits*,
            *yunits*, *zunits* (for 3D Axes), *runits* and *thetaunits* (for
            polar) entries) is popped, if present.  Note that this dict is
            mutated in-place!
        convert : bool, default: True
            Whether to return the original datasets or the converted ones.

        Returns
        -------
        list
            Either the original datasets if *convert* is False, or the
            converted ones if *convert* is True (the default).
        """
        # The API makes datasets a list of pairs rather than an axis_name to
        # dataset mapping because it is sometimes necessary to process multiple
        # datasets for a single axis, and concatenating them may be tricky
        # (e.g. if some are scalars, etc.).
        datasets = datasets or []
        kwargs = kwargs or {}
        axis_map = self._axis_map
        for axis_name, data in datasets:
            try:
                axis = axis_map[axis_name]
            except KeyError:
                raise ValueError(f"Invalid axis name: {axis_name!r}") from None
            # Update from data if axis is already set but no unit is set yet.
            if axis is not None and data is not None and not axis.have_units():
                axis.update_units(data)
        for axis_name, axis in axis_map.items():
            # Return if no axis is set.
            if axis is None:
                continue
            # Check for units in the kwargs, and if present update axis.
            units = kwargs.pop(f"{axis_name}units", axis.units)
            if self.name == "polar":
                # Special case: polar supports "thetaunits"/"runits".
                polar_units = {"x": "thetaunits", "y": "runits"}
                units = kwargs.pop(polar_units[axis_name], units)
            if units != axis.units and units is not None:
                axis.set_units(units)
                # If the units being set imply a different converter,
                # we need to update again.
                for dataset_axis_name, data in datasets:
                    if dataset_axis_name == axis_name and data is not None:
                        axis.update_units(data)
        return [axis_map[axis_name].convert_units(data)
                if convert and data is not None else data
                for axis_name, data in datasets]

    def in_axes(self, mouseevent):
        """
        Return whether the given event (in display coords) is in the Axes.
        """
        return self.patch.contains(mouseevent)[0]

    get_autoscalex_on = _axis_method_wrapper("xaxis", "_get_autoscale_on")
    get_autoscaley_on = _axis_method_wrapper("yaxis", "_get_autoscale_on")
    set_autoscalex_on = _axis_method_wrapper("xaxis", "_set_autoscale_on")
    set_autoscaley_on = _axis_method_wrapper("yaxis", "_set_autoscale_on")

    def get_autoscale_on(self):
        """Return True if each axis is autoscaled, False otherwise."""
        return all(axis._get_autoscale_on()
                   for axis in self._axis_map.values())

    def set_autoscale_on(self, b):
        """
        Set whether autoscaling is applied to each axis on the next draw or
        call to `.Axes.autoscale_view`.

        Parameters
        ----------
        b : bool
        """
        for axis in self._axis_map.values():
            axis._set_autoscale_on(b)

    @property
    def use_sticky_edges(self):
        """
        When autoscaling, whether to obey all `Artist.sticky_edges`.

        Default is ``True``.

        Setting this to ``False`` ensures that the specified margins
        will be applied, even if the plot includes an image, for
        example, which would otherwise force a view limit to coincide
        with its data limit.

        The changing this property does not change the plot until
        `autoscale` or `autoscale_view` is called.
        """
        return self._use_sticky_edges

    @use_sticky_edges.setter
    def use_sticky_edges(self, b):
        self._use_sticky_edges = bool(b)
        # No effect until next autoscaling, which will mark the Axes as stale.

    def set_xmargin(self, m):
        """
        Set padding of X data limits prior to autoscaling.

        *m* times the data interval will be added to each end of that interval
        before it is used in autoscaling.  If *m* is negative, this will clip
        the data range instead of expanding it.

        For example, if your data is in the range [0, 2], a margin of 0.1 will
        result in a range [-0.2, 2.2]; a margin of -0.1 will result in a range
        of [0.2, 1.8].

        Parameters
        ----------
        m : float greater than -0.5
        """
        if m <= -0.5:
            raise ValueError("margin must be greater than -0.5")
        self._xmargin = m
        self._request_autoscale_view("x")
        self.stale = True

    def set_ymargin(self, m):
        """
        Set padding of Y data limits prior to autoscaling.

        *m* times the data interval will be added to each end of that interval
        before it is used in autoscaling.  If *m* is negative, this will clip
        the data range instead of expanding it.

        For example, if your data is in the range [0, 2], a margin of 0.1 will
        result in a range [-0.2, 2.2]; a margin of -0.1 will result in a range
        of [0.2, 1.8].

        Parameters
        ----------
        m : float greater than -0.5
        """
        if m <= -0.5:
            raise ValueError("margin must be greater than -0.5")
        self._ymargin = m
        self._request_autoscale_view("y")
        self.stale = True

    def margins(self, *margins, x=None, y=None, tight=True):
        """
        Set or retrieve autoscaling margins.

        The padding added to each limit of the Axes is the *margin*
        times the data interval. All input parameters must be floats
        greater than -0.5. Passing both positional and keyword
        arguments is invalid and will raise a TypeError. If no
        arguments (positional or otherwise) are provided, the current
        margins will remain unchanged and simply be returned.

        Specifying any margin changes only the autoscaling; for example,
        if *xmargin* is not None, then *xmargin* times the X data
        interval will be added to each end of that interval before
        it is used in autoscaling.

        Parameters
        ----------
        *margins : float, optional
            If a single positional argument is provided, it specifies
            both margins of the x-axis and y-axis limits. If two
            positional arguments are provided, they will be interpreted
            as *xmargin*, *ymargin*. If setting the margin on a single
            axis is desired, use the keyword arguments described below.

        x, y : float, optional
            Specific margin values for the x-axis and y-axis,
            respectively. These cannot be used with positional
            arguments, but can be used individually to alter on e.g.,
            only the y-axis.

        tight : bool or None, default: True
            The *tight* parameter is passed to `~.axes.Axes.autoscale_view`,
            which is executed after a margin is changed; the default
            here is *True*, on the assumption that when margins are
            specified, no additional padding to match tick marks is
            usually desired.  Setting *tight* to *None* preserves
            the previous setting.

        Returns
        -------
        xmargin, ymargin : float

        Notes
        -----
        If a previously used Axes method such as :meth:`pcolor` has set
        :attr:`use_sticky_edges` to `True`, only the limits not set by
        the "sticky artists" will be modified. To force all of the
        margins to be set, set :attr:`use_sticky_edges` to `False`
        before calling :meth:`margins`.
        """

        if margins and (x is not None or y is not None):
            raise TypeError('Cannot pass both positional and keyword '
                            'arguments for x and/or y.')
        elif len(margins) == 1:
            x = y = margins[0]
        elif len(margins) == 2:
            x, y = margins
        elif margins:
            raise TypeError('Must pass a single positional argument for all '
                            'margins, or one for each margin (x, y).')

        if x is None and y is None:
            if tight is not True:
                _api.warn_external(f'ignoring tight={tight!r} in get mode')
            return self._xmargin, self._ymargin

        if tight is not None:
            self._tight = tight
        if x is not None:
            self.set_xmargin(x)
        if y is not None:
            self.set_ymargin(y)

    def set_rasterization_zorder(self, z):
        """
        Set the zorder threshold for rasterization for vector graphics output.

        All artists with a zorder below the given value will be rasterized if
        they support rasterization.

        This setting is ignored for pixel-based output.

        See also :doc:`/gallery/misc/rasterization_demo`.

        Parameters
        ----------
        z : float or None
            The zorder below which artists are rasterized.
            If ``None`` rasterization based on zorder is deactivated.
        """
        self._rasterization_zorder = z
        self.stale = True

    def get_rasterization_zorder(self):
        """Return the zorder value below which artists will be rasterized."""
        return self._rasterization_zorder

    def autoscale(self, enable=True, axis='both', tight=None):
        """
        Autoscale the axis view to the data (toggle).

        Convenience method for simple axis view autoscaling.
        It turns autoscaling on or off, and then,
        if autoscaling for either axis is on, it performs
        the autoscaling on the specified axis or Axes.

        Parameters
        ----------
        enable : bool or None, default: True
            True turns autoscaling on, False turns it off.
            None leaves the autoscaling state unchanged.
        axis : {'both', 'x', 'y'}, default: 'both'
            The axis on which to operate.  (For 3D Axes, *axis* can also be set
            to 'z', and 'both' refers to all three axes.)
        tight : bool or None, default: None
            If True, first set the margins to zero.  Then, this argument is
            forwarded to `~.axes.Axes.autoscale_view` (regardless of
            its value); see the description of its behavior there.
        """
        if enable is None:
            scalex = True
            scaley = True
        else:
            if axis in ['x', 'both']:
                self.set_autoscalex_on(bool(enable))
                scalex = self.get_autoscalex_on()
            else:
                scalex = False
            if axis in ['y', 'both']:
                self.set_autoscaley_on(bool(enable))
                scaley = self.get_autoscaley_on()
            else:
                scaley = False
        if tight and scalex:
            self._xmargin = 0
        if tight and scaley:
            self._ymargin = 0
        if scalex:
            self._request_autoscale_view("x", tight=tight)
        if scaley:
            self._request_autoscale_view("y", tight=tight)

    def autoscale_view(self, tight=None, scalex=True, scaley=True):
        """
        Autoscale the view limits using the data limits.

        Parameters
        ----------
        tight : bool or None
            If *True*, only expand the axis limits using the margins.  Note
            that unlike for `autoscale`, ``tight=True`` does *not* set the
            margins to zero.

            If *False* and :rc:`axes.autolimit_mode` is 'round_numbers', then
            after expansion by the margins, further expand the axis limits
            using the axis major locator.

            If None (the default), reuse the value set in the previous call to
            `autoscale_view` (the initial value is False, but the default style
            sets :rc:`axes.autolimit_mode` to 'data', in which case this
            behaves like True).

        scalex : bool, default: True
            Whether to autoscale the x-axis.

        scaley : bool, default: True
            Whether to autoscale the y-axis.

        Notes
        -----
        The autoscaling preserves any preexisting axis direction reversal.

        The data limits are not updated automatically when artist data are
        changed after the artist has been added to an Axes instance.  In that
        case, use :meth:`matplotlib.axes.Axes.relim` prior to calling
        autoscale_view.

        If the views of the Axes are fixed, e.g. via `set_xlim`, they will
        not be changed by autoscale_view().
        See :meth:`matplotlib.axes.Axes.autoscale` for an alternative.
        """
        if tight is not None:
            self._tight = bool(tight)

        x_stickies = y_stickies = np.array([])
        if self.use_sticky_edges:
            if self._xmargin and scalex and self.get_autoscalex_on():
                x_stickies = np.sort(np.concatenate([
                    artist.sticky_edges.x
                    for ax in self._shared_axes["x"].get_siblings(self)
                    for artist in ax.get_children()]))
            if self._ymargin and scaley and self.get_autoscaley_on():
                y_stickies = np.sort(np.concatenate([
                    artist.sticky_edges.y
                    for ax in self._shared_axes["y"].get_siblings(self)
                    for artist in ax.get_children()]))
        if self.get_xscale() == 'log':
            x_stickies = x_stickies[x_stickies > 0]
        if self.get_yscale() == 'log':
            y_stickies = y_stickies[y_stickies > 0]

        def handle_single_axis(
                scale, shared_axes, name, axis, margin, stickies, set_bound):

            if not (scale and axis._get_autoscale_on()):
                return  # nothing to do...

            shared = shared_axes.get_siblings(self)
            # Base autoscaling on finite data limits when there is at least one
            # finite data limit among all the shared_axes and intervals.
            values = [val for ax in shared
                      for val in getattr(ax.dataLim, f"interval{name}")
                      if np.isfinite(val)]
            if values:
                x0, x1 = (min(values), max(values))
            elif getattr(self._viewLim, f"mutated{name}")():
                # No data, but explicit viewLims already set:
                # in mutatedx or mutatedy.
                return
            else:
                x0, x1 = (-np.inf, np.inf)
            # If x0 and x1 are nonfinite, get default limits from the locator.
            locator = axis.get_major_locator()
            x0, x1 = locator.nonsingular(x0, x1)
            # Find the minimum minpos for use in the margin calculation.
            minimum_minpos = min(
                getattr(ax.dataLim, f"minpos{name}") for ax in shared)

            # Prevent margin addition from crossing a sticky value.  A small
            # tolerance must be added due to floating point issues with
            # streamplot; it is defined relative to x0, x1, x1-x0 but has
            # no absolute term (e.g. "+1e-8") to avoid issues when working with
            # datasets where all values are tiny (less than 1e-8).
            tol = 1e-5 * max(abs(x0), abs(x1), abs(x1 - x0))
            # Index of largest element < x0 + tol, if any.
            i0 = stickies.searchsorted(x0 + tol) - 1
            x0bound = stickies[i0] if i0 != -1 else None
            # Index of smallest element > x1 - tol, if any.
            i1 = stickies.searchsorted(x1 - tol)
            x1bound = stickies[i1] if i1 != len(stickies) else None

            # Add the margin in figure space and then transform back, to handle
            # non-linear scales.
            transform = axis.get_transform()
            inverse_trans = transform.inverted()
            x0, x1 = axis._scale.limit_range_for_scale(x0, x1, minimum_minpos)
            x0t, x1t = transform.transform([x0, x1])
            delta = (x1t - x0t) * margin
            if not np.isfinite(delta):
                delta = 0  # If a bound isn't finite, set margin to zero.
            x0, x1 = inverse_trans.transform([x0t - delta, x1t + delta])

            # Apply sticky bounds.
            if x0bound is not None:
                x0 = max(x0, x0bound)
            if x1bound is not None:
                x1 = min(x1, x1bound)

            if not self._tight:
                x0, x1 = locator.view_limits(x0, x1)
            set_bound(x0, x1)
            # End of definition of internal function 'handle_single_axis'.

        handle_single_axis(
            scalex, self._shared_axes["x"], 'x', self.xaxis, self._xmargin,
            x_stickies, self.set_xbound)
        handle_single_axis(
            scaley, self._shared_axes["y"], 'y', self.yaxis, self._ymargin,
            y_stickies, self.set_ybound)

    def _update_title_position(self, renderer):
        """
        Update the title position based on the bounding box enclosing
        all the ticklabels and x-axis spine and xlabel...
        """
        if self._autotitlepos is not None and not self._autotitlepos:
            _log.debug('title position was updated manually, not adjusting')
            return

        titles = (self.title, self._left_title, self._right_title)

        # Need to check all our twins too, and all the children as well.
        axs = self._twinned_axes.get_siblings(self) + self.child_axes
        for ax in self.child_axes:  # Child positions must be updated first.
            locator = ax.get_axes_locator()
            ax.apply_aspect(locator(self, renderer) if locator else None)

        for title in titles:
            x, _ = title.get_position()
            # need to start again in case of window resizing
            title.set_position((x, 1.0))
            top = -np.inf
            for ax in axs:
                bb = None
                if (ax.xaxis.get_ticks_position() in ['top', 'unknown']
                        or ax.xaxis.get_label_position() == 'top'):
                    bb = ax.xaxis.get_tightbbox(renderer)
                if bb is None:
                    if 'outline' in ax.spines:
                        # Special case for colorbars:
                        bb = ax.spines['outline'].get_window_extent()
                    else:
                        bb = ax.get_window_extent(renderer)
                top = max(top, bb.ymax)
                if title.get_text():
                    ax.yaxis.get_tightbbox(renderer)  # update offsetText
                    if ax.yaxis.offsetText.get_text():
                        bb = ax.yaxis.offsetText.get_tightbbox(renderer)
                        if bb.intersection(title.get_tightbbox(renderer), bb):
                            top = bb.ymax
            if top < 0:
                # the top of Axes is not even on the figure, so don't try and
                # automatically place it.
                _log.debug('top of Axes not in the figure, so title not moved')
                return
            if title.get_window_extent(renderer).ymin < top:
                _, y = self.transAxes.inverted().transform((0, top))
                title.set_position((x, y))
                # empirically, this doesn't always get the min to top,
                # so we need to adjust again.
                if title.get_window_extent(renderer).ymin < top:
                    _, y = self.transAxes.inverted().transform(
                        (0., 2 * top - title.get_window_extent(renderer).ymin))
                    title.set_position((x, y))

        ymax = max(title.get_position()[1] for title in titles)
        for title in titles:
            # now line up all the titles at the highest baseline.
            x, _ = title.get_position()
            title.set_position((x, ymax))

    # Drawing
    @martist.allow_rasterization
    def draw(self, renderer):
        # docstring inherited
        if renderer is None:
            raise RuntimeError('No renderer defined')
        if not self.get_visible():
            return
        self._unstale_viewLim()

        renderer.open_group('axes', gid=self.get_gid())

        # prevent triggering call backs during the draw process
        self._stale = True

        # loop over self and child Axes...
        locator = self.get_axes_locator()
        self.apply_aspect(locator(self, renderer) if locator else None)

        artists = self.get_children()
        artists.remove(self.patch)

        # the frame draws the edges around the Axes patch -- we
        # decouple these so the patch can be in the background and the
        # frame in the foreground. Do this before drawing the axis
        # objects so that the spine has the opportunity to update them.
        if not (self.axison and self._frameon):
            for spine in self.spines.values():
                artists.remove(spine)

        self._update_title_position(renderer)

        if not self.axison:
            for _axis in self._axis_map.values():
                artists.remove(_axis)

        if not self.figure.canvas.is_saving():
            artists = [
                a for a in artists
                if not a.get_animated() or isinstance(a, mimage.AxesImage)]
        artists = sorted(artists, key=attrgetter('zorder'))

        # rasterize artists with negative zorder
        # if the minimum zorder is negative, start rasterization
        rasterization_zorder = self._rasterization_zorder

        if (rasterization_zorder is not None and
                artists and artists[0].zorder < rasterization_zorder):
            split_index = np.searchsorted(
                [art.zorder for art in artists],
                rasterization_zorder, side='right'
            )
            artists_rasterized = artists[:split_index]
            artists = artists[split_index:]
        else:
            artists_rasterized = []

        if self.axison and self._frameon:
            if artists_rasterized:
                artists_rasterized = [self.patch] + artists_rasterized
            else:
                artists = [self.patch] + artists

        if artists_rasterized:
            _draw_rasterized(self.figure, artists_rasterized, renderer)

        mimage._draw_list_compositing_images(
            renderer, self, artists, self.figure.suppressComposite)

        renderer.close_group('axes')
        self.stale = False

    def draw_artist(self, a):
        """
        Efficiently redraw a single artist.
        """
        a.draw(self.figure.canvas.get_renderer())

    def redraw_in_frame(self):
        """
        Efficiently redraw Axes data, but not axis ticks, labels, etc.
        """
        with ExitStack() as stack:
            for artist in [*self._axis_map.values(),
                           self.title, self._left_title, self._right_title]:
                stack.enter_context(artist._cm_set(visible=False))
            self.draw(self.figure.canvas.get_renderer())

    # Axes rectangle characteristics

    def get_frame_on(self):
        """Get whether the Axes rectangle patch is drawn."""
        return self._frameon

    def set_frame_on(self, b):
        """
        Set whether the Axes rectangle patch is drawn.

        Parameters
        ----------
        b : bool
        """
        self._frameon = b
        self.stale = True

    def get_axisbelow(self):
        """
        Get whether axis ticks and gridlines are above or below most artists.

        Returns
        -------
        bool or 'line'

        See Also
        --------
        set_axisbelow
        """
        return self._axisbelow

    def set_axisbelow(self, b):
        """
        Set whether axis ticks and gridlines are above or below most artists.

        This controls the zorder of the ticks and gridlines. For more
        information on the zorder see :doc:`/gallery/misc/zorder_demo`.

        Parameters
        ----------
        b : bool or 'line'
            Possible values:

            - *True* (zorder = 0.5): Ticks and gridlines are below all Artists.
            - 'line' (zorder = 1.5): Ticks and gridlines are above patches
              (e.g. rectangles, with default zorder = 1) but still below lines
              and markers (with their default zorder = 2).
            - *False* (zorder = 2.5): Ticks and gridlines are above patches
              and lines / markers.

        See Also
        --------
        get_axisbelow
        """
        # Check that b is True, False or 'line'
        self._axisbelow = axisbelow = validate_axisbelow(b)
        zorder = {
            True: 0.5,
            'line': 1.5,
            False: 2.5,
        }[axisbelow]
        for axis in self._axis_map.values():
            axis.set_zorder(zorder)
        self.stale = True

    @_docstring.dedent_interpd
    def grid(self, visible=None, which='major', axis='both', **kwargs):
        """
        Configure the grid lines.

        Parameters
        ----------
        visible : bool or None, optional
            Whether to show the grid lines.  If any *kwargs* are supplied, it
            is assumed you want the grid on and *visible* will be set to True.

            If *visible* is *None* and there are no *kwargs*, this toggles the
            visibility of the lines.

        which : {'major', 'minor', 'both'}, optional
            The grid lines to apply the changes on.

        axis : {'both', 'x', 'y'}, optional
            The axis to apply the changes on.

        **kwargs : `~matplotlib.lines.Line2D` properties
            Define the line properties of the grid, e.g.::

                grid(color='r', linestyle='-', linewidth=2)

            Valid keyword arguments are:

            %(Line2D:kwdoc)s

        Notes
        -----
        The axis is drawn as a unit, so the effective zorder for drawing the
        grid is determined by the zorder of each axis, not by the zorder of the
        `.Line2D` objects comprising the grid.  Therefore, to set grid zorder,
        use `.set_axisbelow` or, for more control, call the
        `~.Artist.set_zorder` method of each axis.
        """
        _api.check_in_list(['x', 'y', 'both'], axis=axis)
        if axis in ['x', 'both']:
            self.xaxis.grid(visible, which=which, **kwargs)
        if axis in ['y', 'both']:
            self.yaxis.grid(visible, which=which, **kwargs)

    def ticklabel_format(self, *, axis='both', style='', scilimits=None,
                         useOffset=None, useLocale=None, useMathText=None):
        r"""
        Configure the `.ScalarFormatter` used by default for linear Axes.

        If a parameter is not set, the corresponding property of the formatter
        is left unchanged.

        Parameters
        ----------
        axis : {'x', 'y', 'both'}, default: 'both'
            The axis to configure.  Only major ticks are affected.

        style : {'sci', 'scientific', 'plain'}
            Whether to use scientific notation.
            The formatter default is to use scientific notation.

        scilimits : pair of ints (m, n)
            Scientific notation is used only for numbers outside the range
            10\ :sup:`m` to 10\ :sup:`n` (and only if the formatter is
            configured to use scientific notation at all).  Use (0, 0) to
            include all numbers.  Use (m, m) where m != 0 to fix the order of
            magnitude to 10\ :sup:`m`.
            The formatter default is :rc:`axes.formatter.limits`.

        useOffset : bool or float
            If True, the offset is calculated as needed.
            If False, no offset is used.
            If a numeric value, it sets the offset.
            The formatter default is :rc:`axes.formatter.useoffset`.

        useLocale : bool
            Whether to format the number using the current locale or using the
            C (English) locale.  This affects e.g. the decimal separator.  The
            formatter default is :rc:`axes.formatter.use_locale`.

        useMathText : bool
            Render the offset and scientific notation in mathtext.
            The formatter default is :rc:`axes.formatter.use_mathtext`.

        Raises
        ------
        AttributeError
            If the current formatter is not a `.ScalarFormatter`.
        """
        style = style.lower()
        axis = axis.lower()
        if scilimits is not None:
            try:
                m, n = scilimits
                m + n + 1  # check that both are numbers
            except (ValueError, TypeError) as err:
                raise ValueError("scilimits must be a sequence of 2 integers"
                                 ) from err
        STYLES = {'sci': True, 'scientific': True, 'plain': False, '': None}
        is_sci_style = _api.check_getitem(STYLES, style=style)
        axis_map = {**{k: [v] for k, v in self._axis_map.items()},
                    'both': list(self._axis_map.values())}
        axises = _api.check_getitem(axis_map, axis=axis)
        try:
            for axis in axises:
                if is_sci_style is not None:
                    axis.major.formatter.set_scientific(is_sci_style)
                if scilimits is not None:
                    axis.major.formatter.set_powerlimits(scilimits)
                if useOffset is not None:
                    axis.major.formatter.set_useOffset(useOffset)
                if useLocale is not None:
                    axis.major.formatter.set_useLocale(useLocale)
                if useMathText is not None:
                    axis.major.formatter.set_useMathText(useMathText)
        except AttributeError as err:
            raise AttributeError(
                "This method only works with the ScalarFormatter") from err

    def locator_params(self, axis='both', tight=None, **kwargs):
        """
        Control behavior of major tick locators.

        Because the locator is involved in autoscaling, `~.Axes.autoscale_view`
        is called automatically after the parameters are changed.

        Parameters
        ----------
        axis : {'both', 'x', 'y'}, default: 'both'
            The axis on which to operate.  (For 3D Axes, *axis* can also be
            set to 'z', and 'both' refers to all three axes.)
        tight : bool or None, optional
            Parameter passed to `~.Axes.autoscale_view`.
            Default is None, for no change.

        Other Parameters
        ----------------
        **kwargs
            Remaining keyword arguments are passed to directly to the
            ``set_params()`` method of the locator. Supported keywords depend
            on the type of the locator. See for example
            `~.ticker.MaxNLocator.set_params` for the `.ticker.MaxNLocator`
            used by default for linear.

        Examples
        --------
        When plotting small subplots, one might want to reduce the maximum
        number of ticks and use tight bounds, for example::

            ax.locator_params(tight=True, nbins=4)

        """
        _api.check_in_list([*self._axis_names, "both"], axis=axis)
        for name in self._axis_names:
            if axis in [name, "both"]:
                loc = self._axis_map[name].get_major_locator()
                loc.set_params(**kwargs)
                self._request_autoscale_view(name, tight=tight)
        self.stale = True

    def tick_params(self, axis='both', **kwargs):
        """
        Change the appearance of ticks, tick labels, and gridlines.

        Tick properties that are not explicitly set using the keyword
        arguments remain unchanged unless *reset* is True. For the current
        style settings, see `.Axis.get_tick_params`.

        Parameters
        ----------
        axis : {'x', 'y', 'both'}, default: 'both'
            The axis to which the parameters are applied.
        which : {'major', 'minor', 'both'}, default: 'major'
            The group of ticks to which the parameters are applied.
        reset : bool, default: False
            Whether to reset the ticks to defaults before updating them.

        Other Parameters
        ----------------
        direction : {'in', 'out', 'inout'}
            Puts ticks inside the Axes, outside the Axes, or both.
        length : float
            Tick length in points.
        width : float
            Tick width in points.
        color : color
            Tick color.
        pad : float
            Distance in points between tick and label.
        labelsize : float or str
            Tick label font size in points or as a string (e.g., 'large').
        labelcolor : color
            Tick label color.
        labelfontfamily : str
            Tick label font.
        colors : color
            Tick color and label color.
        zorder : float
            Tick and label zorder.
        bottom, top, left, right : bool
            Whether to draw the respective ticks.
        labelbottom, labeltop, labelleft, labelright : bool
            Whether to draw the respective tick labels.
        labelrotation : float
            Tick label rotation
        grid_color : color
            Gridline color.
        grid_alpha : float
            Transparency of gridlines: 0 (transparent) to 1 (opaque).
        grid_linewidth : float
            Width of gridlines in points.
        grid_linestyle : str
            Any valid `.Line2D` line style spec.

        Examples
        --------
        ::

            ax.tick_params(direction='out', length=6, width=2, colors='r',
                           grid_color='r', grid_alpha=0.5)

        This will make all major ticks be red, pointing out of the box,
        and with dimensions 6 points by 2 points.  Tick labels will
        also be red.  Gridlines will be red and translucent.

        """
        _api.check_in_list(['x', 'y', 'both'], axis=axis)
        if axis in ['x', 'both']:
            xkw = dict(kwargs)
            xkw.pop('left', None)
            xkw.pop('right', None)
            xkw.pop('labelleft', None)
            xkw.pop('labelright', None)
            self.xaxis.set_tick_params(**xkw)
        if axis in ['y', 'both']:
            ykw = dict(kwargs)
            ykw.pop('top', None)
            ykw.pop('bottom', None)
            ykw.pop('labeltop', None)
            ykw.pop('labelbottom', None)
            self.yaxis.set_tick_params(**ykw)

    def set_axis_off(self):
        """
        Hide all visual components of the x- and y-axis.

        This sets a flag to suppress drawing of all axis decorations, i.e.
        axis labels, axis spines, and the axis tick component (tick markers,
        tick labels, and grid lines). Individual visibility settings of these
        components are ignored as long as `set_axis_off()` is in effect.
        """
        self.axison = False
        self.stale = True

    def set_axis_on(self):
        """
        Do not hide all visual components of the x- and y-axis.

        This reverts the effect of a prior `.set_axis_off()` call. Whether the
        individual axis decorations are drawn is controlled by their respective
        visibility settings.

        This is on by default.
        """
        self.axison = True
        self.stale = True

    # data limits, ticks, tick labels, and formatting

    def get_xlabel(self):
        """
        Get the xlabel text string.
        """
        label = self.xaxis.get_label()
        return label.get_text()

    def set_xlabel(self, xlabel, fontdict=None, labelpad=None, *,
                   loc=None, **kwargs):
        """
        Set the label for the x-axis.

        Parameters
        ----------
        xlabel : str
            The label text.

        labelpad : float, default: :rc:`axes.labelpad`
            Spacing in points from the Axes bounding box including ticks
            and tick labels.  If None, the previous value is left as is.

        loc : {'left', 'center', 'right'}, default: :rc:`xaxis.labellocation`
            The label position. This is a high-level alternative for passing
            parameters *x* and *horizontalalignment*.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties
            `.Text` properties control the appearance of the label.

        See Also
        --------
        text : Documents the properties supported by `.Text`.
        """
        if labelpad is not None:
            self.xaxis.labelpad = labelpad
        protected_kw = ['x', 'horizontalalignment', 'ha']
        if {*kwargs} & {*protected_kw}:
            if loc is not None:
                raise TypeError(f"Specifying 'loc' is disallowed when any of "
                                f"its corresponding low level keyword "
                                f"arguments ({protected_kw}) are also "
                                f"supplied")

        else:
            loc = (loc if loc is not None
                   else mpl.rcParams['xaxis.labellocation'])
            _api.check_in_list(('left', 'center', 'right'), loc=loc)

            x = {
                'left': 0,
                'center': 0.5,
                'right': 1,
            }[loc]
            kwargs.update(x=x, horizontalalignment=loc)

        return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)

    def invert_xaxis(self):
        """
        Invert the x-axis.

        See Also
        --------
        xaxis_inverted
        get_xlim, set_xlim
        get_xbound, set_xbound
        """
        self.xaxis.set_inverted(not self.xaxis.get_inverted())

    xaxis_inverted = _axis_method_wrapper("xaxis", "get_inverted")

    def get_xbound(self):
        """
        Return the lower and upper x-axis bounds, in increasing order.

        See Also
        --------
        set_xbound
        get_xlim, set_xlim
        invert_xaxis, xaxis_inverted
        """
        left, right = self.get_xlim()
        if left < right:
            return left, right
        else:
            return right, left

    def set_xbound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the x-axis.

        This method will honor axis inversion regardless of parameter order.
        It will not change the autoscaling setting (`.get_autoscalex_on()`).

        Parameters
        ----------
        lower, upper : float or None
            The lower and upper bounds. If *None*, the respective axis bound
            is not modified.

            .. ACCEPTS: (lower: float, upper: float)

        See Also
        --------
        get_xbound
        get_xlim, set_xlim
        invert_xaxis, xaxis_inverted
        """
        if upper is None and np.iterable(lower):
            lower, upper = lower

        old_lower, old_upper = self.get_xbound()
        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        self.set_xlim(sorted((lower, upper),
                             reverse=bool(self.xaxis_inverted())),
                      auto=None)

    def get_xlim(self):
        """
        Return the x-axis view limits.

        Returns
        -------
        left, right : (float, float)
            The current x-axis limits in data coordinates.

        See Also
        --------
        .Axes.set_xlim
        .Axes.set_xbound, .Axes.get_xbound
        .Axes.invert_xaxis, .Axes.xaxis_inverted

        Notes
        -----
        The x-axis may be inverted, in which case the *left* value will
        be greater than the *right* value.
        """
        return tuple(self.viewLim.intervalx)

    def _validate_converted_limits(self, limit, convert):
        """
        Raise ValueError if converted limits are non-finite.

        Note that this function also accepts None as a limit argument.

        Returns
        -------
        The limit value after call to convert(), or None if limit is None.
        """
        if limit is not None:
            converted_limit = convert(limit)
            if isinstance(converted_limit, np.ndarray):
                converted_limit = converted_limit.squeeze()
            if (isinstance(converted_limit, Real)
                    and not np.isfinite(converted_limit)):
                raise ValueError("Axis limits cannot be NaN or Inf")
            return converted_limit

    def set_xlim(self, left=None, right=None, *, emit=True, auto=False,
                 xmin=None, xmax=None):
        """
        Set the x-axis view limits.

        Parameters
        ----------
        left : float, optional
            The left xlim in data coordinates. Passing *None* leaves the
            limit unchanged.

            The left and right xlims may also be passed as the tuple
            (*left*, *right*) as the first positional argument (or as
            the *left* keyword argument).

            .. ACCEPTS: (left: float, right: float)

        right : float, optional
            The right xlim in data coordinates. Passing *None* leaves the
            limit unchanged.

        emit : bool, default: True
            Whether to notify observers of limit change.

        auto : bool or None, default: False
            Whether to turn on autoscaling of the x-axis. True turns on,
            False turns off, None leaves unchanged.

        xmin, xmax : float, optional
            They are equivalent to left and right respectively, and it is an
            error to pass both *xmin* and *left* or *xmax* and *right*.

        Returns
        -------
        left, right : (float, float)
            The new x-axis limits in data coordinates.

        See Also
        --------
        get_xlim
        set_xbound, get_xbound
        invert_xaxis, xaxis_inverted

        Notes
        -----
        The *left* value may be greater than the *right* value, in which
        case the x-axis values will decrease from left to right.

        Examples
        --------
        >>> set_xlim(left, right)
        >>> set_xlim((left, right))
        >>> left, right = set_xlim(left, right)

        One limit may be left unchanged.

        >>> set_xlim(right=right_lim)

        Limits may be passed in reverse order to flip the direction of
        the x-axis. For example, suppose *x* represents the number of
        years before present. The x-axis limits might be set like the
        following so 5000 years ago is on the left of the plot and the
        present is on the right.

        >>> set_xlim(5000, 0)
        """
        if right is None and np.iterable(left):
            left, right = left
        if xmin is not None:
            if left is not None:
                raise TypeError("Cannot pass both 'left' and 'xmin'")
            left = xmin
        if xmax is not None:
            if right is not None:
                raise TypeError("Cannot pass both 'right' and 'xmax'")
            right = xmax
        return self.xaxis._set_lim(left, right, emit=emit, auto=auto)

    get_xscale = _axis_method_wrapper("xaxis", "get_scale")
    set_xscale = _axis_method_wrapper("xaxis", "_set_axes_scale")
    get_xticks = _axis_method_wrapper("xaxis", "get_ticklocs")
    set_xticks = _axis_method_wrapper("xaxis", "set_ticks",
                                      doc_sub={'set_ticks': 'set_xticks'})
    get_xmajorticklabels = _axis_method_wrapper("xaxis", "get_majorticklabels")
    get_xminorticklabels = _axis_method_wrapper("xaxis", "get_minorticklabels")
    get_xticklabels = _axis_method_wrapper("xaxis", "get_ticklabels")
    set_xticklabels = _axis_method_wrapper(
        "xaxis", "set_ticklabels",
        doc_sub={"Axis.set_ticks": "Axes.set_xticks"})

    def get_ylabel(self):
        """
        Get the ylabel text string.
        """
        label = self.yaxis.get_label()
        return label.get_text()

    def set_ylabel(self, ylabel, fontdict=None, labelpad=None, *,
                   loc=None, **kwargs):
        """
        Set the label for the y-axis.

        Parameters
        ----------
        ylabel : str
            The label text.

        labelpad : float, default: :rc:`axes.labelpad`
            Spacing in points from the Axes bounding box including ticks
            and tick labels.  If None, the previous value is left as is.

        loc : {'bottom', 'center', 'top'}, default: :rc:`yaxis.labellocation`
            The label position. This is a high-level alternative for passing
            parameters *y* and *horizontalalignment*.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties
            `.Text` properties control the appearance of the label.

        See Also
        --------
        text : Documents the properties supported by `.Text`.
        """
        if labelpad is not None:
            self.yaxis.labelpad = labelpad
        protected_kw = ['y', 'horizontalalignment', 'ha']
        if {*kwargs} & {*protected_kw}:
            if loc is not None:
                raise TypeError(f"Specifying 'loc' is disallowed when any of "
                                f"its corresponding low level keyword "
                                f"arguments ({protected_kw}) are also "
                                f"supplied")

        else:
            loc = (loc if loc is not None
                   else mpl.rcParams['yaxis.labellocation'])
            _api.check_in_list(('bottom', 'center', 'top'), loc=loc)

            y, ha = {
                'bottom': (0, 'left'),
                'center': (0.5, 'center'),
                'top': (1, 'right')
            }[loc]
            kwargs.update(y=y, horizontalalignment=ha)

        return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)

    def invert_yaxis(self):
        """
        Invert the y-axis.

        See Also
        --------
        yaxis_inverted
        get_ylim, set_ylim
        get_ybound, set_ybound
        """
        self.yaxis.set_inverted(not self.yaxis.get_inverted())

    yaxis_inverted = _axis_method_wrapper("yaxis", "get_inverted")

    def get_ybound(self):
        """
        Return the lower and upper y-axis bounds, in increasing order.

        See Also
        --------
        set_ybound
        get_ylim, set_ylim
        invert_yaxis, yaxis_inverted
        """
        bottom, top = self.get_ylim()
        if bottom < top:
            return bottom, top
        else:
            return top, bottom

    def set_ybound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the y-axis.

        This method will honor axis inversion regardless of parameter order.
        It will not change the autoscaling setting (`.get_autoscaley_on()`).

        Parameters
        ----------
        lower, upper : float or None
            The lower and upper bounds. If *None*, the respective axis bound
            is not modified.

         .. ACCEPTS: (lower: float, upper: float)

        See Also
        --------
        get_ybound
        get_ylim, set_ylim
        invert_yaxis, yaxis_inverted
        """
        if upper is None and np.iterable(lower):
            lower, upper = lower

        old_lower, old_upper = self.get_ybound()
        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        self.set_ylim(sorted((lower, upper),
                             reverse=bool(self.yaxis_inverted())),
                      auto=None)

    def get_ylim(self):
        """
        Return the y-axis view limits.

        Returns
        -------
        bottom, top : (float, float)
            The current y-axis limits in data coordinates.

        See Also
        --------
        .Axes.set_ylim
        .Axes.set_ybound, .Axes.get_ybound
        .Axes.invert_yaxis, .Axes.yaxis_inverted

        Notes
        -----
        The y-axis may be inverted, in which case the *bottom* value
        will be greater than the *top* value.
        """
        return tuple(self.viewLim.intervaly)

    def set_ylim(self, bottom=None, top=None, *, emit=True, auto=False,
                 ymin=None, ymax=None):
        """
        Set the y-axis view limits.

        Parameters
        ----------
        bottom : float, optional
            The bottom ylim in data coordinates. Passing *None* leaves the
            limit unchanged.

            The bottom and top ylims may also be passed as the tuple
            (*bottom*, *top*) as the first positional argument (or as
            the *bottom* keyword argument).

            .. ACCEPTS: (bottom: float, top: float)

        top : float, optional
            The top ylim in data coordinates. Passing *None* leaves the
            limit unchanged.

        emit : bool, default: True
            Whether to notify observers of limit change.

        auto : bool or None, default: False
            Whether to turn on autoscaling of the y-axis. *True* turns on,
            *False* turns off, *None* leaves unchanged.

        ymin, ymax : float, optional
            They are equivalent to bottom and top respectively, and it is an
            error to pass both *ymin* and *bottom* or *ymax* and *top*.

        Returns
        -------
        bottom, top : (float, float)
            The new y-axis limits in data coordinates.

        See Also
        --------
        get_ylim
        set_ybound, get_ybound
        invert_yaxis, yaxis_inverted

        Notes
        -----
        The *bottom* value may be greater than the *top* value, in which
        case the y-axis values will decrease from *bottom* to *top*.

        Examples
        --------
        >>> set_ylim(bottom, top)
        >>> set_ylim((bottom, top))
        >>> bottom, top = set_ylim(bottom, top)

        One limit may be left unchanged.

        >>> set_ylim(top=top_lim)

        Limits may be passed in reverse order to flip the direction of
        the y-axis. For example, suppose ``y`` represents depth of the
        ocean in m. The y-axis limits might be set like the following
        so 5000 m depth is at the bottom of the plot and the surface,
        0 m, is at the top.

        >>> set_ylim(5000, 0)
        """
        if top is None and np.iterable(bottom):
            bottom, top = bottom
        if ymin is not None:
            if bottom is not None:
                raise TypeError("Cannot pass both 'bottom' and 'ymin'")
            bottom = ymin
        if ymax is not None:
            if top is not None:
                raise TypeError("Cannot pass both 'top' and 'ymax'")
            top = ymax
        return self.yaxis._set_lim(bottom, top, emit=emit, auto=auto)

    get_yscale = _axis_method_wrapper("yaxis", "get_scale")
    set_yscale = _axis_method_wrapper("yaxis", "_set_axes_scale")
    get_yticks = _axis_method_wrapper("yaxis", "get_ticklocs")
    set_yticks = _axis_method_wrapper("yaxis", "set_ticks",
                                      doc_sub={'set_ticks': 'set_yticks'})
    get_ymajorticklabels = _axis_method_wrapper("yaxis", "get_majorticklabels")
    get_yminorticklabels = _axis_method_wrapper("yaxis", "get_minorticklabels")
    get_yticklabels = _axis_method_wrapper("yaxis", "get_ticklabels")
    set_yticklabels = _axis_method_wrapper(
        "yaxis", "set_ticklabels",
        doc_sub={"Axis.set_ticks": "Axes.set_yticks"})

    xaxis_date = _axis_method_wrapper("xaxis", "axis_date")
    yaxis_date = _axis_method_wrapper("yaxis", "axis_date")

    def format_xdata(self, x):
        """
        Return *x* formatted as an x-value.

        This function will use the `.fmt_xdata` attribute if it is not None,
        else will fall back on the xaxis major formatter.
        """
        return (self.fmt_xdata if self.fmt_xdata is not None
                else self.xaxis.get_major_formatter().format_data_short)(x)

    def format_ydata(self, y):
        """
        Return *y* formatted as a y-value.

        This function will use the `.fmt_ydata` attribute if it is not None,
        else will fall back on the yaxis major formatter.
        """
        return (self.fmt_ydata if self.fmt_ydata is not None
                else self.yaxis.get_major_formatter().format_data_short)(y)

    def format_coord(self, x, y):
        """Return a format string formatting the *x*, *y* coordinates."""
        return "x={} y={}".format(
            "???" if x is None else self.format_xdata(x),
            "???" if y is None else self.format_ydata(y),
        )

    def minorticks_on(self):
        """
        Display minor ticks on the Axes.

        Displaying minor ticks may reduce performance; you may turn them off
        using `minorticks_off()` if drawing speed is a problem.
        """
        for ax in (self.xaxis, self.yaxis):
            scale = ax.get_scale()
            if scale == 'log':
                s = ax._scale
                ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
            elif scale == 'symlog':
                s = ax._scale
                ax.set_minor_locator(
                    mticker.SymmetricalLogLocator(s._transform, s.subs))
            else:
                ax.set_minor_locator(mticker.AutoMinorLocator())

    def minorticks_off(self):
        """Remove minor ticks from the Axes."""
        self.xaxis.set_minor_locator(mticker.NullLocator())
        self.yaxis.set_minor_locator(mticker.NullLocator())

    # Interactive manipulation

    def can_zoom(self):
        """
        Return whether this Axes supports the zoom box button functionality.
        """
        return True

    def can_pan(self):
        """
        Return whether this Axes supports any pan/zoom button functionality.
        """
        return True

    def get_navigate(self):
        """
        Get whether the Axes responds to navigation commands.
        """
        return self._navigate

    def set_navigate(self, b):
        """
        Set whether the Axes responds to navigation toolbar commands.

        Parameters
        ----------
        b : bool
        """
        self._navigate = b

    def get_navigate_mode(self):
        """
        Get the navigation toolbar button status: 'PAN', 'ZOOM', or None.
        """
        return self._navigate_mode

    def set_navigate_mode(self, b):
        """
        Set the navigation toolbar button status.

        .. warning::
            This is not a user-API function.

        """
        self._navigate_mode = b

    def _get_view(self):
        """
        Save information required to reproduce the current view.

        This method is called before a view is changed, such as during a pan or zoom
        initiated by the user.  It returns an opaque object that describes the current
        view, in a format compatible with :meth:`_set_view`.

        The default implementation saves the view limits and autoscaling state.
        Subclasses may override this as needed, as long as :meth:`_set_view` is also
        adjusted accordingly.
        """
        return {
            "xlim": self.get_xlim(), "autoscalex_on": self.get_autoscalex_on(),
            "ylim": self.get_ylim(), "autoscaley_on": self.get_autoscaley_on(),
        }

    def _set_view(self, view):
        """
        Apply a previously saved view.

        This method is called when restoring a view (with the return value of
        :meth:`_get_view` as argument), such as with the navigation buttons.

        Subclasses that override :meth:`_get_view` also need to override this method
        accordingly.
        """
        self.set(**view)

    def _prepare_view_from_bbox(self, bbox, direction='in',
                                mode=None, twinx=False, twiny=False):
        """
        Helper function to prepare the new bounds from a bbox.

        This helper function returns the new x and y bounds from the zoom
        bbox. This a convenience method to abstract the bbox logic
        out of the base setter.
        """
        if len(bbox) == 3:
            xp, yp, scl = bbox  # Zooming code
            if scl == 0:  # Should not happen
                scl = 1.
            if scl > 1:
                direction = 'in'
            else:
                direction = 'out'
                scl = 1/scl
            # get the limits of the axes
            (xmin, ymin), (xmax, ymax) = self.transData.transform(
                np.transpose([self.get_xlim(), self.get_ylim()]))
            # set the range
            xwidth = xmax - xmin
            ywidth = ymax - ymin
            xcen = (xmax + xmin)*.5
            ycen = (ymax + ymin)*.5
            xzc = (xp*(scl - 1) + xcen)/scl
            yzc = (yp*(scl - 1) + ycen)/scl
            bbox = [xzc - xwidth/2./scl, yzc - ywidth/2./scl,
                    xzc + xwidth/2./scl, yzc + ywidth/2./scl]
        elif len(bbox) != 4:
            # should be len 3 or 4 but nothing else
            _api.warn_external(
                "Warning in _set_view_from_bbox: bounding box is not a tuple "
                "of length 3 or 4. Ignoring the view change.")
            return

        # Original limits.
        xmin0, xmax0 = self.get_xbound()
        ymin0, ymax0 = self.get_ybound()
        # The zoom box in screen coords.
        startx, starty, stopx, stopy = bbox
        # Convert to data coords.
        (startx, starty), (stopx, stopy) = self.transData.inverted().transform(
            [(startx, starty), (stopx, stopy)])
        # Clip to axes limits.
        xmin, xmax = np.clip(sorted([startx, stopx]), xmin0, xmax0)
        ymin, ymax = np.clip(sorted([starty, stopy]), ymin0, ymax0)
        # Don't double-zoom twinned axes or if zooming only the other axis.
        if twinx or mode == "y":
            xmin, xmax = xmin0, xmax0
        if twiny or mode == "x":
            ymin, ymax = ymin0, ymax0

        if direction == "in":
            new_xbound = xmin, xmax
            new_ybound = ymin, ymax

        elif direction == "out":
            x_trf = self.xaxis.get_transform()
            sxmin0, sxmax0, sxmin, sxmax = x_trf.transform(
                [xmin0, xmax0, xmin, xmax])  # To screen space.
            factor = (sxmax0 - sxmin0) / (sxmax - sxmin)  # Unzoom factor.
            # Move original bounds away by
            # (factor) x (distance between unzoom box and Axes bbox).
            sxmin1 = sxmin0 - factor * (sxmin - sxmin0)
            sxmax1 = sxmax0 + factor * (sxmax0 - sxmax)
            # And back to data space.
            new_xbound = x_trf.inverted().transform([sxmin1, sxmax1])

            y_trf = self.yaxis.get_transform()
            symin0, symax0, symin, symax = y_trf.transform(
                [ymin0, ymax0, ymin, ymax])
            factor = (symax0 - symin0) / (symax - symin)
            symin1 = symin0 - factor * (symin - symin0)
            symax1 = symax0 + factor * (symax0 - symax)
            new_ybound = y_trf.inverted().transform([symin1, symax1])

        return new_xbound, new_ybound

    def _set_view_from_bbox(self, bbox, direction='in',
                            mode=None, twinx=False, twiny=False):
        """
        Update view from a selection bbox.

        .. note::

            Intended to be overridden by new projection types, but if not, the
            default implementation sets the view limits to the bbox directly.

        Parameters
        ----------
        bbox : 4-tuple or 3 tuple
            * If bbox is a 4 tuple, it is the selected bounding box limits,
              in *display* coordinates.
            * If bbox is a 3 tuple, it is an (xp, yp, scl) triple, where
              (xp, yp) is the center of zooming and scl the scale factor to
              zoom by.

        direction : str
            The direction to apply the bounding box.
                * `'in'` - The bounding box describes the view directly, i.e.,
                           it zooms in.
                * `'out'` - The bounding box describes the size to make the
                            existing view, i.e., it zooms out.

        mode : str or None
            The selection mode, whether to apply the bounding box in only the
            `'x'` direction, `'y'` direction or both (`None`).

        twinx : bool
            Whether this axis is twinned in the *x*-direction.

        twiny : bool
            Whether this axis is twinned in the *y*-direction.
        """
        new_xbound, new_ybound = self._prepare_view_from_bbox(
            bbox, direction=direction, mode=mode, twinx=twinx, twiny=twiny)
        if not twinx and mode != "y":
            self.set_xbound(new_xbound)
            self.set_autoscalex_on(False)
        if not twiny and mode != "x":
            self.set_ybound(new_ybound)
            self.set_autoscaley_on(False)

    def start_pan(self, x, y, button):
        """
        Called when a pan operation has started.

        Parameters
        ----------
        x, y : float
            The mouse coordinates in display coords.
        button : `.MouseButton`
            The pressed mouse button.

        Notes
        -----
        This is intended to be overridden by new projection types.
        """
        self._pan_start = types.SimpleNamespace(
            lim=self.viewLim.frozen(),
            trans=self.transData.frozen(),
            trans_inverse=self.transData.inverted().frozen(),
            bbox=self.bbox.frozen(),
            x=x,
            y=y)

    def end_pan(self):
        """
        Called when a pan operation completes (when the mouse button is up.)

        Notes
        -----
        This is intended to be overridden by new projection types.
        """
        del self._pan_start

    def _get_pan_points(self, button, key, x, y):
        """
        Helper function to return the new points after a pan.

        This helper function returns the points on the axis after a pan has
        occurred. This is a convenience method to abstract the pan logic
        out of the base setter.
        """
        def format_deltas(key, dx, dy):
            if key == 'control':
                if abs(dx) > abs(dy):
                    dy = dx
                else:
                    dx = dy
            elif key == 'x':
                dy = 0
            elif key == 'y':
                dx = 0
            elif key == 'shift':
                if 2 * abs(dx) < abs(dy):
                    dx = 0
                elif 2 * abs(dy) < abs(dx):
                    dy = 0
                elif abs(dx) > abs(dy):
                    dy = dy / abs(dy) * abs(dx)
                else:
                    dx = dx / abs(dx) * abs(dy)
            return dx, dy

        p = self._pan_start
        dx = x - p.x
        dy = y - p.y
        if dx == dy == 0:
            return
        if button == 1:
            dx, dy = format_deltas(key, dx, dy)
            result = p.bbox.translated(-dx, -dy).transformed(p.trans_inverse)
        elif button == 3:
            try:
                dx = -dx / self.bbox.width
                dy = -dy / self.bbox.height
                dx, dy = format_deltas(key, dx, dy)
                if self.get_aspect() != 'auto':
                    dx = dy = 0.5 * (dx + dy)
                alpha = np.power(10.0, (dx, dy))
                start = np.array([p.x, p.y])
                oldpoints = p.lim.transformed(p.trans)
                newpoints = start + alpha * (oldpoints - start)
                result = (mtransforms.Bbox(newpoints)
                          .transformed(p.trans_inverse))
            except OverflowError:
                _api.warn_external('Overflow while panning')
                return
        else:
            return

        valid = np.isfinite(result.transformed(p.trans))
        points = result.get_points().astype(object)
        # Just ignore invalid limits (typically, underflow in log-scale).
        points[~valid] = None
        return points

    def drag_pan(self, button, key, x, y):
        """
        Called when the mouse moves during a pan operation.

        Parameters
        ----------
        button : `.MouseButton`
            The pressed mouse button.
        key : str or None
            The pressed key, if any.
        x, y : float
            The mouse coordinates in display coords.

        Notes
        -----
        This is intended to be overridden by new projection types.
        """
        points = self._get_pan_points(button, key, x, y)
        if points is not None:
            self.set_xlim(points[:, 0])
            self.set_ylim(points[:, 1])

    def get_children(self):
        # docstring inherited.
        return [
            *self._children,
            *self.spines.values(),
            *self._axis_map.values(),
            self.title, self._left_title, self._right_title,
            *self.child_axes,
            *([self.legend_] if self.legend_ is not None else []),
            self.patch,
        ]

    def contains(self, mouseevent):
        # docstring inherited.
        return self.patch.contains(mouseevent)

    def contains_point(self, point):
        """
        Return whether *point* (pair of pixel coordinates) is inside the Axes
        patch.
        """
        return self.patch.contains_point(point, radius=1.0)

    def get_default_bbox_extra_artists(self):
        """
        Return a default list of artists that are used for the bounding box
        calculation.

        Artists are excluded either by not being visible or
        ``artist.set_in_layout(False)``.
        """

        artists = self.get_children()

        for axis in self._axis_map.values():
            # axis tight bboxes are calculated separately inside
            # Axes.get_tightbbox() using for_layout_only=True
            artists.remove(axis)
        if not (self.axison and self._frameon):
            # don't do bbox on spines if frame not on.
            for spine in self.spines.values():
                artists.remove(spine)

        artists.remove(self.title)
        artists.remove(self._left_title)
        artists.remove(self._right_title)

        # always include types that do not internally implement clipping
        # to Axes. may have clip_on set to True and clip_box equivalent
        # to ax.bbox but then ignore these properties during draws.
        noclip = (_AxesBase, maxis.Axis,
                  offsetbox.AnnotationBbox, offsetbox.OffsetBox)
        return [a for a in artists if a.get_visible() and a.get_in_layout()
                and (isinstance(a, noclip) or not a._fully_clipped_to_axes())]

    @_api.make_keyword_only("3.8", "call_axes_locator")
    def get_tightbbox(self, renderer=None, call_axes_locator=True,
                      bbox_extra_artists=None, *, for_layout_only=False):
        """
        Return the tight bounding box of the Axes, including axis and their
        decorators (xlabel, title, etc).

        Artists that have ``artist.set_in_layout(False)`` are not included
        in the bbox.

        Parameters
        ----------
        renderer : `.RendererBase` subclass
            renderer that will be used to draw the figures (i.e.
            ``fig.canvas.get_renderer()``)

        bbox_extra_artists : list of `.Artist` or ``None``
            List of artists to include in the tight bounding box.  If
            ``None`` (default), then all artist children of the Axes are
            included in the tight bounding box.

        call_axes_locator : bool, default: True
            If *call_axes_locator* is ``False``, it does not call the
            ``_axes_locator`` attribute, which is necessary to get the correct
            bounding box. ``call_axes_locator=False`` can be used if the
            caller is only interested in the relative size of the tightbbox
            compared to the Axes bbox.

        for_layout_only : default: False
            The bounding box will *not* include the x-extent of the title and
            the xlabel, or the y-extent of the ylabel.

        Returns
        -------
        `.BboxBase`
            Bounding box in figure pixel coordinates.

        See Also
        --------
        matplotlib.axes.Axes.get_window_extent
        matplotlib.axis.Axis.get_tightbbox
        matplotlib.spines.Spine.get_window_extent
        """

        bb = []
        if renderer is None:
            renderer = self.figure._get_renderer()

        if not self.get_visible():
            return None

        locator = self.get_axes_locator()
        self.apply_aspect(
            locator(self, renderer) if locator and call_axes_locator else None)

        for axis in self._axis_map.values():
            if self.axison and axis.get_visible():
                ba = martist._get_tightbbox_for_layout_only(axis, renderer)
                if ba:
                    bb.append(ba)
        self._update_title_position(renderer)
        axbbox = self.get_window_extent(renderer)
        bb.append(axbbox)

        for title in [self.title, self._left_title, self._right_title]:
            if title.get_visible():
                bt = title.get_window_extent(renderer)
                if for_layout_only and bt.width > 0:
                    # make the title bbox 1 pixel wide so its width
                    # is not accounted for in bbox calculations in
                    # tight/constrained_layout
                    bt.x0 = (bt.x0 + bt.x1) / 2 - 0.5
                    bt.x1 = bt.x0 + 1.0
                bb.append(bt)

        bbox_artists = bbox_extra_artists
        if bbox_artists is None:
            bbox_artists = self.get_default_bbox_extra_artists()

        for a in bbox_artists:
            bbox = a.get_tightbbox(renderer)
            if (bbox is not None
                    and 0 < bbox.width < np.inf
                    and 0 < bbox.height < np.inf):
                bb.append(bbox)
        return mtransforms.Bbox.union(
            [b for b in bb if b.width != 0 or b.height != 0])

    def _make_twin_axes(self, *args, **kwargs):
        """Make a twinx Axes of self. This is used for twinx and twiny."""
        if 'sharex' in kwargs and 'sharey' in kwargs:
            # The following line is added in v2.2 to avoid breaking Seaborn,
            # which currently uses this internal API.
            if kwargs["sharex"] is not self and kwargs["sharey"] is not self:
                raise ValueError("Twinned Axes may share only one axis")
        ss = self.get_subplotspec()
        if ss:
            twin = self.figure.add_subplot(ss, *args, **kwargs)
        else:
            twin = self.figure.add_axes(
                self.get_position(True), *args, **kwargs,
                axes_locator=_TransformedBoundsLocator(
                    [0, 0, 1, 1], self.transAxes))
        self.set_adjustable('datalim')
        twin.set_adjustable('datalim')
        self._twinned_axes.join(self, twin)
        return twin

    def twinx(self):
        """
        Create a twin Axes sharing the xaxis.

        Create a new Axes with an invisible x-axis and an independent
        y-axis positioned opposite to the original one (i.e. at right). The
        x-axis autoscale setting will be inherited from the original
        Axes.  To ensure that the tick marks of both y-axes align, see
        `~matplotlib.ticker.LinearLocator`.

        Returns
        -------
        Axes
            The newly created Axes instance

        Notes
        -----
        For those who are 'picking' artists while using twinx, pick
        events are only called for the artists in the top-most Axes.
        """
        ax2 = self._make_twin_axes(sharex=self)
        ax2.yaxis.tick_right()
        ax2.yaxis.set_label_position('right')
        ax2.yaxis.set_offset_position('right')
        ax2.set_autoscalex_on(self.get_autoscalex_on())
        self.yaxis.tick_left()
        ax2.xaxis.set_visible(False)
        ax2.patch.set_visible(False)
        ax2.xaxis.units = self.xaxis.units
        return ax2

    def twiny(self):
        """
        Create a twin Axes sharing the yaxis.

        Create a new Axes with an invisible y-axis and an independent
        x-axis positioned opposite to the original one (i.e. at top). The
        y-axis autoscale setting will be inherited from the original Axes.
        To ensure that the tick marks of both x-axes align, see
        `~matplotlib.ticker.LinearLocator`.

        Returns
        -------
        Axes
            The newly created Axes instance

        Notes
        -----
        For those who are 'picking' artists while using twiny, pick
        events are only called for the artists in the top-most Axes.
        """
        ax2 = self._make_twin_axes(sharey=self)
        ax2.xaxis.tick_top()
        ax2.xaxis.set_label_position('top')
        ax2.set_autoscaley_on(self.get_autoscaley_on())
        self.xaxis.tick_bottom()
        ax2.yaxis.set_visible(False)
        ax2.patch.set_visible(False)
        ax2.yaxis.units = self.yaxis.units
        return ax2

    def get_shared_x_axes(self):
        """Return an immutable view on the shared x-axes Grouper."""
        return cbook.GrouperView(self._shared_axes["x"])

    def get_shared_y_axes(self):
        """Return an immutable view on the shared y-axes Grouper."""
        return cbook.GrouperView(self._shared_axes["y"])

    def label_outer(self, remove_inner_ticks=False):
        """
        Only show "outer" labels and tick labels.

        x-labels are only kept for subplots on the last row (or first row, if
        labels are on the top side); y-labels only for subplots on the first
        column (or last column, if labels are on the right side).

        Parameters
        ----------
        remove_inner_ticks : bool, default: False
            If True, remove the inner ticks as well (not only tick labels).

            .. versionadded:: 3.8
        """
        self._label_outer_xaxis(skip_non_rectangular_axes=False,
                                remove_inner_ticks=remove_inner_ticks)
        self._label_outer_yaxis(skip_non_rectangular_axes=False,
                                remove_inner_ticks=remove_inner_ticks)

    def _label_outer_xaxis(self, *, skip_non_rectangular_axes,
                           remove_inner_ticks=False):
        # see documentation in label_outer.
        if skip_non_rectangular_axes and not isinstance(self.patch,
                                                        mpl.patches.Rectangle):
            return
        ss = self.get_subplotspec()
        if not ss:
            return
        label_position = self.xaxis.get_label_position()
        if not ss.is_first_row():  # Remove top label/ticklabels/offsettext.
            if label_position == "top":
                self.set_xlabel("")
            top_kw = {'top': False} if remove_inner_ticks else {}
            self.xaxis.set_tick_params(
                which="both", labeltop=False, **top_kw)
            if self.xaxis.offsetText.get_position()[1] == 1:
                self.xaxis.offsetText.set_visible(False)
        if not ss.is_last_row():  # Remove bottom label/ticklabels/offsettext.
            if label_position == "bottom":
                self.set_xlabel("")
            bottom_kw = {'bottom': False} if remove_inner_ticks else {}
            self.xaxis.set_tick_params(
                which="both", labelbottom=False, **bottom_kw)
            if self.xaxis.offsetText.get_position()[1] == 0:
                self.xaxis.offsetText.set_visible(False)

    def _label_outer_yaxis(self, *, skip_non_rectangular_axes,
                           remove_inner_ticks=False):
        # see documentation in label_outer.
        if skip_non_rectangular_axes and not isinstance(self.patch,
                                                        mpl.patches.Rectangle):
            return
        ss = self.get_subplotspec()
        if not ss:
            return
        label_position = self.yaxis.get_label_position()
        if not ss.is_first_col():  # Remove left label/ticklabels/offsettext.
            if label_position == "left":
                self.set_ylabel("")
            left_kw = {'left': False} if remove_inner_ticks else {}
            self.yaxis.set_tick_params(
                which="both", labelleft=False, **left_kw)
            if self.yaxis.offsetText.get_position()[0] == 0:
                self.yaxis.offsetText.set_visible(False)
        if not ss.is_last_col():  # Remove right label/ticklabels/offsettext.
            if label_position == "right":
                self.set_ylabel("")
            right_kw = {'right': False} if remove_inner_ticks else {}
            self.yaxis.set_tick_params(
                which="both", labelright=False, **right_kw)
            if self.yaxis.offsetText.get_position()[0] == 1:
                self.yaxis.offsetText.set_visible(False)


def _draw_rasterized(figure, artists, renderer):
    """
    A helper function for rasterizing the list of artists.

    The bookkeeping to track if we are or are not in rasterizing mode
    with the mixed-mode backends is relatively complicated and is now
    handled in the matplotlib.artist.allow_rasterization decorator.

    This helper defines the absolute minimum methods and attributes on a
    shim class to be compatible with that decorator and then uses it to
    rasterize the list of artists.

    This is maybe too-clever, but allows us to re-use the same code that is
    used on normal artists to participate in the "are we rasterizing"
    accounting.

    Please do not use this outside of the "rasterize below a given zorder"
    functionality of Axes.

    Parameters
    ----------
    figure : matplotlib.figure.Figure
        The figure all of the artists belong to (not checked).  We need this
        because we can at the figure level suppress composition and insert each
        rasterized artist as its own image.

    artists : List[matplotlib.artist.Artist]
        The list of Artists to be rasterized.  These are assumed to all
        be in the same Figure.

    renderer : matplotlib.backendbases.RendererBase
        The currently active renderer

    Returns
    -------
    None

    """
    class _MinimalArtist:
        def get_rasterized(self):
            return True

        def get_agg_filter(self):
            return None

        def __init__(self, figure, artists):
            self.figure = figure
            self.artists = artists

        @martist.allow_rasterization
        def draw(self, renderer):
            for a in self.artists:
                a.draw(renderer)

    return _MinimalArtist(figure, artists).draw(renderer)