File size: 3,260 Bytes
add8f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""This module should not be used directly as its API is subject to change. Instead,
please use the `gr.Interface.from_pipeline()` function."""

from __future__ import annotations

from typing import TYPE_CHECKING

from gradio.pipelines_utils import (
    handle_diffusers_pipeline,
    handle_transformers_pipeline,
)

if TYPE_CHECKING:
    import diffusers
    import transformers


def load_from_pipeline(
    pipeline: transformers.Pipeline | diffusers.DiffusionPipeline,  # type: ignore
) -> dict:
    """
    Gets the appropriate Interface kwargs for a given Hugging Face transformers.Pipeline or diffusers.DiffusionPipeline.
    pipeline (transformers.Pipeline): the transformers.Pipeline from which to create an interface
    Returns:
    (dict): a dictionary of kwargs that can be used to construct an Interface object
    """

    if str(type(pipeline).__module__).startswith("transformers.pipelines."):
        pipeline_info = handle_transformers_pipeline(pipeline)
    elif str(type(pipeline).__module__).startswith("diffusers.pipelines."):
        pipeline_info = handle_diffusers_pipeline(pipeline)
    else:
        raise ValueError(
            "pipeline must be a transformers.pipeline or diffusers.pipeline"
        )

    def fn(*params):
        if pipeline_info:
            data = pipeline_info["preprocess"](*params)
            if str(type(pipeline).__module__).startswith("transformers.pipelines"):
                from transformers import pipelines

                # special cases that needs to be handled differently
                if isinstance(
                    pipeline,
                    (
                        pipelines.text_classification.TextClassificationPipeline,
                        pipelines.text2text_generation.Text2TextGenerationPipeline,
                        pipelines.text2text_generation.TranslationPipeline,
                    ),
                ):
                    data = pipeline(*data)
                else:
                    data = pipeline(**data)  # type: ignore
                # special case for object-detection
                # original input image sent to postprocess function
                if isinstance(
                    pipeline,
                    pipelines.object_detection.ObjectDetectionPipeline,
                ):
                    output = pipeline_info["postprocess"](data, params[0])
                else:
                    output = pipeline_info["postprocess"](data)
                return output

            elif str(type(pipeline).__module__).startswith("diffusers.pipelines"):
                data = pipeline(**data)  # type: ignore
                output = pipeline_info["postprocess"](data)
                return output
        else:
            raise ValueError("pipeline_info can not be None.")

    interface_info = pipeline_info.copy() if pipeline_info else {}
    interface_info["fn"] = fn
    del interface_info["preprocess"]
    del interface_info["postprocess"]

    # define the title/description of the Interface
    interface_info["title"] = (
        pipeline.model.__class__.__name__
        if str(type(pipeline).__module__).startswith("transformers.pipelines")
        else pipeline.__class__.__name__
    )

    return interface_info