File size: 30,891 Bytes
0a06673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
# -*- coding: utf-8 -*-
# ===================================================================
#
# Copyright (c) 2016, Legrandin <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
__all__ = ['generate', 'construct', 'import_key',
'RsaKey', 'oid']
import binascii
import struct
from Crypto import Random
from Crypto.Util.py3compat import tobytes, bord, tostr
from Crypto.Util.asn1 import DerSequence, DerNull
from Crypto.Util.number import bytes_to_long
from Crypto.Math.Numbers import Integer
from Crypto.Math.Primality import (test_probable_prime,
generate_probable_prime, COMPOSITE)
from Crypto.PublicKey import (_expand_subject_public_key_info,
_create_subject_public_key_info,
_extract_subject_public_key_info)
class RsaKey(object):
r"""Class defining an RSA key, private or public.
Do not instantiate directly.
Use :func:`generate`, :func:`construct` or :func:`import_key` instead.
:ivar n: RSA modulus
:vartype n: integer
:ivar e: RSA public exponent
:vartype e: integer
:ivar d: RSA private exponent
:vartype d: integer
:ivar p: First factor of the RSA modulus
:vartype p: integer
:ivar q: Second factor of the RSA modulus
:vartype q: integer
:ivar invp: Chinese remainder component (:math:`p^{-1} \text{mod } q`)
:vartype invp: integer
:ivar invq: Chinese remainder component (:math:`q^{-1} \text{mod } p`)
:vartype invq: integer
:ivar u: Same as ``invp``
:vartype u: integer
"""
def __init__(self, **kwargs):
"""Build an RSA key.
:Keywords:
n : integer
The modulus.
e : integer
The public exponent.
d : integer
The private exponent. Only required for private keys.
p : integer
The first factor of the modulus. Only required for private keys.
q : integer
The second factor of the modulus. Only required for private keys.
u : integer
The CRT coefficient (inverse of p modulo q). Only required for
private keys.
"""
input_set = set(kwargs.keys())
public_set = set(('n', 'e'))
private_set = public_set | set(('p', 'q', 'd', 'u'))
if input_set not in (private_set, public_set):
raise ValueError("Some RSA components are missing")
for component, value in kwargs.items():
setattr(self, "_" + component, value)
if input_set == private_set:
self._dp = self._d % (self._p - 1) # = (e⁻¹) mod (p-1)
self._dq = self._d % (self._q - 1) # = (e⁻¹) mod (q-1)
self._invq = None # will be computed on demand
@property
def n(self):
return int(self._n)
@property
def e(self):
return int(self._e)
@property
def d(self):
if not self.has_private():
raise AttributeError("No private exponent available for public keys")
return int(self._d)
@property
def p(self):
if not self.has_private():
raise AttributeError("No CRT component 'p' available for public keys")
return int(self._p)
@property
def q(self):
if not self.has_private():
raise AttributeError("No CRT component 'q' available for public keys")
return int(self._q)
@property
def dp(self):
if not self.has_private():
raise AttributeError("No CRT component 'dp' available for public keys")
return int(self._dp)
@property
def dq(self):
if not self.has_private():
raise AttributeError("No CRT component 'dq' available for public keys")
return int(self._dq)
@property
def invq(self):
if not self.has_private():
raise AttributeError("No CRT component 'invq' available for public keys")
if self._invq is None:
self._invq = self._q.inverse(self._p)
return int(self._invq)
@property
def invp(self):
return self.u
@property
def u(self):
if not self.has_private():
raise AttributeError("No CRT component 'u' available for public keys")
return int(self._u)
def size_in_bits(self):
"""Size of the RSA modulus in bits"""
return self._n.size_in_bits()
def size_in_bytes(self):
"""The minimal amount of bytes that can hold the RSA modulus"""
return (self._n.size_in_bits() - 1) // 8 + 1
def _encrypt(self, plaintext):
if not 0 <= plaintext < self._n:
raise ValueError("Plaintext too large")
return int(pow(Integer(plaintext), self._e, self._n))
def _decrypt_to_bytes(self, ciphertext):
if not 0 <= ciphertext < self._n:
raise ValueError("Ciphertext too large")
if not self.has_private():
raise TypeError("This is not a private key")
# Blinded RSA decryption (to prevent timing attacks):
# Step 1: Generate random secret blinding factor r,
# such that 0 < r < n-1
r = Integer.random_range(min_inclusive=1, max_exclusive=self._n)
# Step 2: Compute c' = c * r**e mod n
cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n
# Step 3: Compute m' = c'**d mod n (normal RSA decryption)
m1 = pow(cp, self._dp, self._p)
m2 = pow(cp, self._dq, self._q)
h = ((m2 - m1) * self._u) % self._q
mp = h * self._p + m1
# Step 4: Compute m = m' * (r**(-1)) mod n
# then encode into a big endian byte string
result = Integer._mult_modulo_bytes(
r.inverse(self._n),
mp,
self._n)
return result
def _decrypt(self, ciphertext):
"""Legacy private method"""
return bytes_to_long(self._decrypt_to_bytes(ciphertext))
def has_private(self):
"""Whether this is an RSA private key"""
return hasattr(self, "_d")
def can_encrypt(self): # legacy
return True
def can_sign(self): # legacy
return True
def public_key(self):
"""A matching RSA public key.
Returns:
a new :class:`RsaKey` object
"""
return RsaKey(n=self._n, e=self._e)
def __eq__(self, other):
if self.has_private() != other.has_private():
return False
if self.n != other.n or self.e != other.e:
return False
if not self.has_private():
return True
return (self.d == other.d)
def __ne__(self, other):
return not (self == other)
def __getstate__(self):
# RSA key is not pickable
from pickle import PicklingError
raise PicklingError
def __repr__(self):
if self.has_private():
extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p),
int(self._q), int(self._u))
else:
extra = ""
return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra)
def __str__(self):
if self.has_private():
key_type = "Private"
else:
key_type = "Public"
return "%s RSA key at 0x%X" % (key_type, id(self))
def export_key(self, format='PEM', passphrase=None, pkcs=1,
protection=None, randfunc=None, prot_params=None):
"""Export this RSA key.
Keyword Args:
format (string):
The desired output format:
- ``'PEM'``. (default) Text output, according to `RFC1421`_/`RFC1423`_.
- ``'DER'``. Binary output.
- ``'OpenSSH'``. Text output, according to the OpenSSH specification.
Only suitable for public keys (not private keys).
Note that PEM contains a DER structure.
passphrase (bytes or string):
(*Private keys only*) The passphrase to protect the
private key.
pkcs (integer):
(*Private keys only*) The standard to use for
serializing the key: PKCS#1 or PKCS#8.
With ``pkcs=1`` (*default*), the private key is encoded with a
simple `PKCS#1`_ structure (``RSAPrivateKey``). The key cannot be
securely encrypted.
With ``pkcs=8``, the private key is encoded with a `PKCS#8`_ structure
(``PrivateKeyInfo``). PKCS#8 offers the best ways to securely
encrypt the key.
.. note::
This parameter is ignored for a public key.
For DER and PEM, the output is always an
ASN.1 DER ``SubjectPublicKeyInfo`` structure.
protection (string):
(*For private keys only*)
The encryption scheme to use for protecting the private key
using the passphrase.
You can only specify a value if ``pkcs=8``.
For all possible protection schemes,
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`.
The recommended value is
``'PBKDF2WithHMAC-SHA512AndAES256-CBC'``.
If ``None`` (default), the behavior depends on :attr:`format`:
- if ``format='PEM'``, the obsolete PEM encryption scheme is used.
It is based on MD5 for key derivation, and 3DES for encryption.
- if ``format='DER'``, the ``'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'``
scheme is used.
prot_params (dict):
(*For private keys only*)
The parameters to use to derive the encryption key
from the passphrase. ``'protection'`` must be also specified.
For all possible values,
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`.
The recommendation is to use ``{'iteration_count':21000}`` for PBKDF2,
and ``{'iteration_count':131072}`` for scrypt.
randfunc (callable):
A function that provides random bytes. Only used for PEM encoding.
The default is :func:`Crypto.Random.get_random_bytes`.
Returns:
bytes: the encoded key
Raises:
ValueError:when the format is unknown or when you try to encrypt a private
key with *DER* format and PKCS#1.
.. warning::
If you don't provide a pass phrase, the private key will be
exported in the clear!
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
"""
if passphrase is not None:
passphrase = tobytes(passphrase)
if randfunc is None:
randfunc = Random.get_random_bytes
if format == 'OpenSSH':
e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)]
if bord(e_bytes[0]) & 0x80:
e_bytes = b'\x00' + e_bytes
if bord(n_bytes[0]) & 0x80:
n_bytes = b'\x00' + n_bytes
keyparts = [b'ssh-rsa', e_bytes, n_bytes]
keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts])
return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1]
# DER format is always used, even in case of PEM, which simply
# encodes it into BASE64.
if self.has_private():
binary_key = DerSequence([0,
self.n,
self.e,
self.d,
self.p,
self.q,
self.d % (self.p-1),
self.d % (self.q-1),
Integer(self.q).inverse(self.p)
]).encode()
if pkcs == 1:
key_type = 'RSA PRIVATE KEY'
if format == 'DER' and passphrase:
raise ValueError("PKCS#1 private key cannot be encrypted")
else: # PKCS#8
from Crypto.IO import PKCS8
if format == 'PEM' and protection is None:
key_type = 'PRIVATE KEY'
binary_key = PKCS8.wrap(binary_key, oid, None,
key_params=DerNull())
else:
key_type = 'ENCRYPTED PRIVATE KEY'
if not protection:
if prot_params:
raise ValueError("'protection' parameter must be set")
protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
binary_key = PKCS8.wrap(binary_key, oid,
passphrase, protection,
prot_params=prot_params,
key_params=DerNull())
passphrase = None
else:
key_type = "PUBLIC KEY"
binary_key = _create_subject_public_key_info(oid,
DerSequence([self.n,
self.e]),
DerNull()
)
if format == 'DER':
return binary_key
if format == 'PEM':
from Crypto.IO import PEM
pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc)
return tobytes(pem_str)
raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
# Backward compatibility
def exportKey(self, *args, **kwargs):
""":meta private:"""
return self.export_key(*args, **kwargs)
def publickey(self):
""":meta private:"""
return self.public_key()
# Methods defined in PyCrypto that we don't support anymore
def sign(self, M, K):
""":meta private:"""
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
def verify(self, M, signature):
""":meta private:"""
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
def encrypt(self, plaintext, K):
""":meta private:"""
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
def decrypt(self, ciphertext):
""":meta private:"""
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
def blind(self, M, B):
""":meta private:"""
raise NotImplementedError
def unblind(self, M, B):
""":meta private:"""
raise NotImplementedError
def size(self):
""":meta private:"""
raise NotImplementedError
def generate(bits, randfunc=None, e=65537):
"""Create a new RSA key pair.
The algorithm closely follows NIST `FIPS 186-4`_ in its
sections B.3.1 and B.3.3. The modulus is the product of
two non-strong probable primes.
Each prime passes a suitable number of Miller-Rabin tests
with random bases and a single Lucas test.
Args:
bits (integer):
Key length, or size (in bits) of the RSA modulus.
It must be at least 1024, but **2048 is recommended.**
The FIPS standard only defines 1024, 2048 and 3072.
Keyword Args:
randfunc (callable):
Function that returns random bytes.
The default is :func:`Crypto.Random.get_random_bytes`.
e (integer):
Public RSA exponent. It must be an odd positive integer.
It is typically a small number with very few ones in its
binary representation.
The FIPS standard requires the public exponent to be
at least 65537 (the default).
Returns: an RSA key object (:class:`RsaKey`, with private key).
.. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
"""
if bits < 1024:
raise ValueError("RSA modulus length must be >= 1024")
if e % 2 == 0 or e < 3:
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
if randfunc is None:
randfunc = Random.get_random_bytes
d = n = Integer(1)
e = Integer(e)
while n.size_in_bits() != bits and d < (1 << (bits // 2)):
# Generate the prime factors of n: p and q.
# By construciton, their product is always
# 2^{bits-1} < p*q < 2^bits.
size_q = bits // 2
size_p = bits - size_q
min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt()
if size_q != size_p:
min_p = (Integer(1) << (2 * size_p - 1)).sqrt()
def filter_p(candidate):
return candidate > min_p and (candidate - 1).gcd(e) == 1
p = generate_probable_prime(exact_bits=size_p,
randfunc=randfunc,
prime_filter=filter_p)
min_distance = Integer(1) << (bits // 2 - 100)
def filter_q(candidate):
return (candidate > min_q and
(candidate - 1).gcd(e) == 1 and
abs(candidate - p) > min_distance)
q = generate_probable_prime(exact_bits=size_q,
randfunc=randfunc,
prime_filter=filter_q)
n = p * q
lcm = (p - 1).lcm(q - 1)
d = e.inverse(lcm)
if p > q:
p, q = q, p
u = p.inverse(q)
return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
def construct(rsa_components, consistency_check=True):
r"""Construct an RSA key from a tuple of valid RSA components.
The modulus **n** must be the product of two primes.
The public exponent **e** must be odd and larger than 1.
In case of a private key, the following equations must apply:
.. math::
\begin{align}
p*q &= n \\
e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\
p*u &\equiv 1 ( \text{mod } q)
\end{align}
Args:
rsa_components (tuple):
A tuple of integers, with at least 2 and no
more than 6 items. The items come in the following order:
1. RSA modulus *n*.
2. Public exponent *e*.
3. Private exponent *d*.
Only required if the key is private.
4. First factor of *n* (*p*).
Optional, but the other factor *q* must also be present.
5. Second factor of *n* (*q*). Optional.
6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional.
Keyword Args:
consistency_check (boolean):
If ``True``, the library will verify that the provided components
fulfil the main RSA properties.
Raises:
ValueError: when the key being imported fails the most basic RSA validity checks.
Returns: An RSA key object (:class:`RsaKey`).
"""
class InputComps(object):
pass
input_comps = InputComps()
for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components):
setattr(input_comps, comp, Integer(value))
n = input_comps.n
e = input_comps.e
if not hasattr(input_comps, 'd'):
key = RsaKey(n=n, e=e)
else:
d = input_comps.d
if hasattr(input_comps, 'q'):
p = input_comps.p
q = input_comps.q
else:
# Compute factors p and q from the private exponent d.
# We assume that n has no more than two factors.
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t //= 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = Integer(2)
while not spotted and a < 100:
k = Integer(t)
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = Integer(n).gcd(cand + 1)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
assert ((n % p) == 0)
q = n // p
if hasattr(input_comps, 'u'):
u = input_comps.u
else:
u = p.inverse(q)
# Build key object
key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
# Verify consistency of the key
if consistency_check:
# Modulus and public exponent must be coprime
if e <= 1 or e >= n:
raise ValueError("Invalid RSA public exponent")
if Integer(n).gcd(e) != 1:
raise ValueError("RSA public exponent is not coprime to modulus")
# For RSA, modulus must be odd
if not n & 1:
raise ValueError("RSA modulus is not odd")
if key.has_private():
# Modulus and private exponent must be coprime
if d <= 1 or d >= n:
raise ValueError("Invalid RSA private exponent")
if Integer(n).gcd(d) != 1:
raise ValueError("RSA private exponent is not coprime to modulus")
# Modulus must be product of 2 primes
if p * q != n:
raise ValueError("RSA factors do not match modulus")
if test_probable_prime(p) == COMPOSITE:
raise ValueError("RSA factor p is composite")
if test_probable_prime(q) == COMPOSITE:
raise ValueError("RSA factor q is composite")
# See Carmichael theorem
phi = (p - 1) * (q - 1)
lcm = phi // (p - 1).gcd(q - 1)
if (e * d % int(lcm)) != 1:
raise ValueError("Invalid RSA condition")
if hasattr(key, 'u'):
# CRT coefficient
if u <= 1 or u >= q:
raise ValueError("Invalid RSA component u")
if (p * u % q) != 1:
raise ValueError("Invalid RSA component u with p")
return key
def _import_pkcs1_private(encoded, *kwargs):
# RSAPrivateKey ::= SEQUENCE {
# version Version,
# modulus INTEGER, -- n
# publicExponent INTEGER, -- e
# privateExponent INTEGER, -- d
# prime1 INTEGER, -- p
# prime2 INTEGER, -- q
# exponent1 INTEGER, -- d mod (p-1)
# exponent2 INTEGER, -- d mod (q-1)
# coefficient INTEGER -- (inverse of q) mod p
# }
#
# Version ::= INTEGER
der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True)
if der[0] != 0:
raise ValueError("No PKCS#1 encoding of an RSA private key")
return construct(der[1:6] + [Integer(der[4]).inverse(der[5])])
def _import_pkcs1_public(encoded, *kwargs):
# RSAPublicKey ::= SEQUENCE {
# modulus INTEGER, -- n
# publicExponent INTEGER -- e
# }
der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True)
return construct(der)
def _import_subjectPublicKeyInfo(encoded, *kwargs):
algoid, encoded_key, params = _expand_subject_public_key_info(encoded)
if algoid != oid or params is not None:
raise ValueError("No RSA subjectPublicKeyInfo")
return _import_pkcs1_public(encoded_key)
def _import_x509_cert(encoded, *kwargs):
sp_info = _extract_subject_public_key_info(encoded)
return _import_subjectPublicKeyInfo(sp_info)
def _import_pkcs8(encoded, passphrase):
from Crypto.IO import PKCS8
k = PKCS8.unwrap(encoded, passphrase)
if k[0] != oid:
raise ValueError("No PKCS#8 encoded RSA key")
return _import_keyDER(k[1], passphrase)
def _import_keyDER(extern_key, passphrase):
"""Import an RSA key (public or private half), encoded in DER form."""
decodings = (_import_pkcs1_private,
_import_pkcs1_public,
_import_subjectPublicKeyInfo,
_import_x509_cert,
_import_pkcs8)
for decoding in decodings:
try:
return decoding(extern_key, passphrase)
except ValueError:
pass
raise ValueError("RSA key format is not supported")
def _import_openssh_private_rsa(data, password):
from ._openssh import (import_openssh_private_generic,
read_bytes, read_string, check_padding)
ssh_name, decrypted = import_openssh_private_generic(data, password)
if ssh_name != "ssh-rsa":
raise ValueError("This SSH key is not RSA")
n, decrypted = read_bytes(decrypted)
e, decrypted = read_bytes(decrypted)
d, decrypted = read_bytes(decrypted)
iqmp, decrypted = read_bytes(decrypted)
p, decrypted = read_bytes(decrypted)
q, decrypted = read_bytes(decrypted)
_, padded = read_string(decrypted) # Comment
check_padding(padded)
build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)]
return construct(build)
def import_key(extern_key, passphrase=None):
"""Import an RSA key (public or private).
Args:
extern_key (string or byte string):
The RSA key to import.
The following formats are supported for an RSA **public key**:
- X.509 certificate (binary or PEM format)
- X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM
encoding)
- `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding)
- An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII)
The following formats are supported for an RSA **private key**:
- PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding)
- `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
DER SEQUENCE (binary or PEM encoding)
- OpenSSH (text format, introduced in `OpenSSH 6.5`_)
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
passphrase (string or byte string):
For private keys only, the pass phrase that encrypts the key.
Returns: An RSA key object (:class:`RsaKey`).
Raises:
ValueError/IndexError/TypeError:
When the given key cannot be parsed (possibly because the pass
phrase is wrong).
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
.. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
"""
from Crypto.IO import PEM
extern_key = tobytes(extern_key)
if passphrase is not None:
passphrase = tobytes(passphrase)
if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
text_encoded = tostr(extern_key)
openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
result = _import_openssh_private_rsa(openssh_encoded, passphrase)
return result
if extern_key.startswith(b'-----'):
# This is probably a PEM encoded key.
(der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
if enc_flag:
passphrase = None
return _import_keyDER(der, passphrase)
if extern_key.startswith(b'ssh-rsa '):
# This is probably an OpenSSH key
keystring = binascii.a2b_base64(extern_key.split(b' ')[1])
keyparts = []
while len(keystring) > 4:
length = struct.unpack(">I", keystring[:4])[0]
keyparts.append(keystring[4:4 + length])
keystring = keystring[4 + length:]
e = Integer.from_bytes(keyparts[1])
n = Integer.from_bytes(keyparts[2])
return construct([n, e])
if len(extern_key) > 0 and bord(extern_key[0]) == 0x30:
# This is probably a DER encoded key
return _import_keyDER(extern_key, passphrase)
raise ValueError("RSA key format is not supported")
# Backward compatibility
importKey = import_key
#: `Object ID`_ for the RSA encryption algorithm. This OID often indicates
#: a generic RSA key, even when such key will be actually used for digital
#: signatures.
#:
#: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
oid = "1.2.840.113549.1.1.1"
|