osanseviero's picture
Create app.py
1ee0b41 verified
raw
history blame
2.36 kB
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
def get_initial_distribution(seed=42):
np.random.seed(seed) # For reproducibility
token_probs = np.random.rand(10)
token_probs /= np.sum(token_probs) # Normalize to sum to 1
return token_probs
def adjust_distribution(temperature, top_k, top_p, initial_probs):
# Apply temperature scaling
token_probs = np.exp(np.log(initial_probs) / temperature)
token_probs /= np.sum(token_probs)
# Apply Top-K filtering
if top_k > 0:
top_k_indices = np.argsort(token_probs)[-top_k:]
top_k_probs = np.zeros_like(token_probs)
top_k_probs[top_k_indices] = token_probs[top_k_indices]
top_k_probs /= np.sum(top_k_probs) # Normalize after filtering
token_probs = top_k_probs
# Apply top_p (nucleus) filtering
if top_p < 1.0:
# Sort probabilities in descending order and compute cumulative sum
sorted_indices = np.argsort(token_probs)[::-1]
cumulative_probs = np.cumsum(token_probs[sorted_indices])
# Find the cutoff index for nucleus sampling
cutoff_index = np.searchsorted(cumulative_probs, top_p) + 1
# Get the indices that meet the threshold
top_p_indices = sorted_indices[:cutoff_index]
top_p_probs = np.zeros_like(token_probs)
top_p_probs[top_p_indices] = token_probs[top_p_indices]
top_p_probs /= np.sum(top_p_probs) # Normalize after filtering
token_probs = top_p_probs
# Plotting the probabilities
plt.figure(figsize=(10, 6))
plt.bar(range(10), token_probs, tick_label=[f'Token {i}' for i in range(10)])
plt.xlabel('Tokens')
plt.ylabel('Probabilities')
plt.title('Token Probability Distribution')
plt.ylim(0, 1)
plt.grid(True)
plt.tight_layout()
return plt
initial_probs = get_initial_distribution()
def update_plot(temperature, top_k, top_p):
return adjust_distribution(temperature, top_k, top_p, initial_probs)
interface = gr.Interface(
fn=update_plot,
inputs=[
gr.Slider(0.1, 2.0, step=0.1, value=1.0, label="Temperature"),
gr.Slider(0, 10, step=1, value=5, label="Top-k"),
gr.Slider(0.0, 1.0, step=0.01, value=0.9, label="Top-p"),
],
outputs=gr.Plot(label="Token Probability Distribution"),
live=True
)
interface.launch()