import faiss from langchain.vectorstores import FAISS from langchain.schema import Document from embeddings import get_embedding # Import the updated embedding function # FAISS parameters dim = 384 # Size of the embedding (MiniLM has 384-dimensional vectors) index = faiss.IndexFlatL2(dim) vector_db = FAISS(embedding_function=get_embedding, index=index) def add_document(text, doc_id): """Add document embeddings to FAISS.""" doc = Document(page_content=text, metadata={"id": doc_id}) vector_db.add_documents([doc]) def search(query): """Search FAISS index for similar documents.""" results = vector_db.similarity_search(query, k=3) return results