Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,8 @@ WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-la
|
|
12 |
# Set up headers for the Whisper API request
|
13 |
headers = {"Authorization": f"Bearer {api_key}"}
|
14 |
|
15 |
-
# Load the DeepSeek model using Hugging Face's pipeline
|
16 |
-
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-
|
17 |
|
18 |
# Function to query the Hugging Face Whisper model for audio transcription
|
19 |
def transcribe_audio(audio_file):
|
@@ -25,7 +25,7 @@ def transcribe_audio(audio_file):
|
|
25 |
else:
|
26 |
return f"Error: {response.status_code}, {response.text}"
|
27 |
|
28 |
-
# Function to generate Mermaid.js code using the DeepSeek model (
|
29 |
def generate_mermaid_code(prompt):
|
30 |
# Instruction included in the prompt to guide DeepSeek to generate valid MermaidJS code
|
31 |
deepseek_prompt = f"Generate a valid MermaidJS diagram code for the following: {prompt}"
|
@@ -39,11 +39,11 @@ def process_input(input_type, text_input, audio_input):
|
|
39 |
if input_type == "Audio" and audio_input is not None:
|
40 |
# Transcribe audio using the Whisper API
|
41 |
transcription = transcribe_audio(audio_input)
|
42 |
-
# Generate Mermaid.js code from transcription using DeepSeek-R1
|
43 |
return generate_mermaid_code(transcription)
|
44 |
|
45 |
elif input_type == "Text" and text_input:
|
46 |
-
# Generate Mermaid.js code directly from text input using DeepSeek-R1
|
47 |
return generate_mermaid_code(text_input)
|
48 |
|
49 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
@@ -51,7 +51,7 @@ def process_input(input_type, text_input, audio_input):
|
|
51 |
transcription = transcribe_audio(audio_input)
|
52 |
# Combine text input and transcription
|
53 |
combined_input = f"{text_input} and {transcription}"
|
54 |
-
# Generate Mermaid.js code using DeepSeek-R1
|
55 |
return generate_mermaid_code(combined_input)
|
56 |
|
57 |
else:
|
|
|
12 |
# Set up headers for the Whisper API request
|
13 |
headers = {"Authorization": f"Bearer {api_key}"}
|
14 |
|
15 |
+
# Load the DeepSeek-R1-Distill-Qwen-1.5B model using Hugging Face's pipeline
|
16 |
+
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
|
17 |
|
18 |
# Function to query the Hugging Face Whisper model for audio transcription
|
19 |
def transcribe_audio(audio_file):
|
|
|
25 |
else:
|
26 |
return f"Error: {response.status_code}, {response.text}"
|
27 |
|
28 |
+
# Function to generate Mermaid.js code using the DeepSeek model (DeepSeek-R1-Distill-Qwen-1.5B)
|
29 |
def generate_mermaid_code(prompt):
|
30 |
# Instruction included in the prompt to guide DeepSeek to generate valid MermaidJS code
|
31 |
deepseek_prompt = f"Generate a valid MermaidJS diagram code for the following: {prompt}"
|
|
|
39 |
if input_type == "Audio" and audio_input is not None:
|
40 |
# Transcribe audio using the Whisper API
|
41 |
transcription = transcribe_audio(audio_input)
|
42 |
+
# Generate Mermaid.js code from transcription using DeepSeek-R1-Distill-Qwen-1.5B
|
43 |
return generate_mermaid_code(transcription)
|
44 |
|
45 |
elif input_type == "Text" and text_input:
|
46 |
+
# Generate Mermaid.js code directly from text input using DeepSeek-R1-Distill-Qwen-1.5B
|
47 |
return generate_mermaid_code(text_input)
|
48 |
|
49 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
|
|
51 |
transcription = transcribe_audio(audio_input)
|
52 |
# Combine text input and transcription
|
53 |
combined_input = f"{text_input} and {transcription}"
|
54 |
+
# Generate Mermaid.js code using DeepSeek-R1-Distill-Qwen-1.5B
|
55 |
return generate_mermaid_code(combined_input)
|
56 |
|
57 |
else:
|