Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import os
|
|
|
4 |
|
5 |
# Set up the Hugging Face API key (ensure you've set this as an environment variable)
|
6 |
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
7 |
|
8 |
-
|
9 |
# API URLs
|
10 |
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
|
11 |
-
#MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-Nemo-Instruct-2407"
|
12 |
-
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1"
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
# Function to query the Hugging Face Whisper model for audio transcription
|
19 |
def transcribe_audio(audio_file):
|
20 |
with open(audio_file, "rb") as f:
|
21 |
data = f.read()
|
22 |
-
response = requests.post(WHISPER_API_URL, headers=
|
23 |
if response.status_code == 200:
|
24 |
return response.json().get("text", "Transcription not available.")
|
25 |
else:
|
26 |
return f"Error: {response.status_code}, {response.text}"
|
27 |
|
28 |
-
# Function to query the Mistral model to generate Mermaid.js code
|
29 |
def generate_mermaid_code(prompt):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
"inputs": mermaid_prompt,
|
38 |
-
"parameters": {
|
39 |
-
"max_length": 256,
|
40 |
-
"temperature": 0.7
|
41 |
-
}
|
42 |
-
}
|
43 |
-
|
44 |
-
# Send the request to the Mistral API
|
45 |
-
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
|
46 |
-
|
47 |
-
# Check if the request was successful
|
48 |
-
if response.status_code == 200:
|
49 |
-
result = response.json()
|
50 |
-
# Extract the generated Mermaid.js code
|
51 |
-
return result[0]['generated_text'].strip()
|
52 |
-
else:
|
53 |
-
return f"Error: {response.status_code}, {response.text}"
|
54 |
|
55 |
-
# Function to process text, audio, or both inputs
|
56 |
def process_input(input_type, text_input, audio_input):
|
57 |
if input_type == "Audio" and audio_input is not None:
|
58 |
-
# Transcribe audio
|
59 |
transcription = transcribe_audio(audio_input)
|
60 |
-
# Generate Mermaid.js code
|
61 |
return generate_mermaid_code(transcription)
|
62 |
-
|
63 |
elif input_type == "Text" and text_input:
|
64 |
-
# Generate Mermaid.js code directly from text input
|
65 |
return generate_mermaid_code(text_input)
|
66 |
-
|
67 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
68 |
-
# Transcribe audio
|
69 |
transcription = transcribe_audio(audio_input)
|
70 |
-
# Combine text input and transcription
|
71 |
combined_input = f"{text_input} and {transcription}"
|
72 |
-
# Generate Mermaid.js code
|
73 |
return generate_mermaid_code(combined_input)
|
74 |
-
|
75 |
else:
|
76 |
return "No valid input provided."
|
77 |
|
78 |
-
# Set up the Gradio interface
|
79 |
iface = gr.Interface(
|
80 |
fn=process_input,
|
81 |
inputs=[
|
@@ -90,5 +60,4 @@ iface = gr.Interface(
|
|
90 |
description="Provide text, audio, or both. Mermaid.js code will be generated based on the text or audio input, or their combination."
|
91 |
)
|
92 |
|
93 |
-
# Launch the Gradio app
|
94 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import os
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
|
6 |
# Set up the Hugging Face API key (ensure you've set this as an environment variable)
|
7 |
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
8 |
|
|
|
9 |
# API URLs
|
10 |
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
|
|
|
|
|
11 |
|
12 |
+
# Set up inference client for DeepSeek-R1
|
13 |
+
client = InferenceClient(
|
14 |
+
provider="together",
|
15 |
+
api_key=api_key
|
16 |
+
)
|
17 |
|
|
|
18 |
def transcribe_audio(audio_file):
|
19 |
with open(audio_file, "rb") as f:
|
20 |
data = f.read()
|
21 |
+
response = requests.post(WHISPER_API_URL, headers={"Authorization": f"Bearer {api_key}"}, data=data)
|
22 |
if response.status_code == 200:
|
23 |
return response.json().get("text", "Transcription not available.")
|
24 |
else:
|
25 |
return f"Error: {response.status_code}, {response.text}"
|
26 |
|
|
|
27 |
def generate_mermaid_code(prompt):
|
28 |
+
messages = [{"role": "user", "content": f"Generate a valid MermaidJS diagram code for the following: {prompt}"}]
|
29 |
+
completion = client.chat.completions.create(
|
30 |
+
model="deepseek-ai/DeepSeek-R1",
|
31 |
+
messages=messages,
|
32 |
+
max_tokens=500
|
33 |
+
)
|
34 |
+
return completion.choices[0].message['content'].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
36 |
def process_input(input_type, text_input, audio_input):
|
37 |
if input_type == "Audio" and audio_input is not None:
|
|
|
38 |
transcription = transcribe_audio(audio_input)
|
|
|
39 |
return generate_mermaid_code(transcription)
|
|
|
40 |
elif input_type == "Text" and text_input:
|
|
|
41 |
return generate_mermaid_code(text_input)
|
|
|
42 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
|
|
43 |
transcription = transcribe_audio(audio_input)
|
|
|
44 |
combined_input = f"{text_input} and {transcription}"
|
|
|
45 |
return generate_mermaid_code(combined_input)
|
|
|
46 |
else:
|
47 |
return "No valid input provided."
|
48 |
|
|
|
49 |
iface = gr.Interface(
|
50 |
fn=process_input,
|
51 |
inputs=[
|
|
|
60 |
description="Provide text, audio, or both. Mermaid.js code will be generated based on the text or audio input, or their combination."
|
61 |
)
|
62 |
|
|
|
63 |
iface.launch()
|