Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,63 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
-
|
4 |
|
5 |
-
# Set up the Hugging Face API key
|
6 |
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
7 |
|
8 |
-
#
|
9 |
-
client = InferenceClient(
|
10 |
-
provider="together",
|
11 |
-
api_key=api_key
|
12 |
-
)
|
13 |
-
|
14 |
-
# API URL for Whisper
|
15 |
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def transcribe_audio(audio_file):
|
18 |
with open(audio_file, "rb") as f:
|
19 |
data = f.read()
|
20 |
-
headers = {"Authorization": f"Bearer {api_key}"}
|
21 |
response = requests.post(WHISPER_API_URL, headers=headers, data=data)
|
22 |
if response.status_code == 200:
|
23 |
return response.json().get("text", "Transcription not available.")
|
24 |
else:
|
25 |
return f"Error: {response.status_code}, {response.text}"
|
26 |
|
|
|
27 |
def generate_mermaid_code(prompt):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
-
return completion.choices[0].message.content.strip()
|
35 |
|
|
|
36 |
def process_input(input_type, text_input, audio_input):
|
37 |
if input_type == "Audio" and audio_input is not None:
|
|
|
38 |
transcription = transcribe_audio(audio_input)
|
|
|
39 |
return generate_mermaid_code(transcription)
|
|
|
40 |
elif input_type == "Text" and text_input:
|
|
|
41 |
return generate_mermaid_code(text_input)
|
|
|
42 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
|
|
43 |
transcription = transcribe_audio(audio_input)
|
|
|
44 |
combined_input = f"{text_input} and {transcription}"
|
|
|
45 |
return generate_mermaid_code(combined_input)
|
|
|
46 |
else:
|
47 |
return "No valid input provided."
|
48 |
|
|
|
49 |
iface = gr.Interface(
|
50 |
fn=process_input,
|
51 |
inputs=[
|
@@ -60,4 +72,5 @@ iface = gr.Interface(
|
|
60 |
description="Provide text, audio, or both. Mermaid.js code will be generated based on the text or audio input, or their combination."
|
61 |
)
|
62 |
|
63 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import os
|
4 |
+
import requests
|
5 |
|
6 |
+
# Set up the Hugging Face API key for Whisper
|
7 |
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
8 |
|
9 |
+
# Set up the API URL for Whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
|
11 |
|
12 |
+
# Set up headers for the Whisper API request
|
13 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
14 |
+
|
15 |
+
# Load the DeepSeek model using Hugging Face's pipeline (no API call, local model)
|
16 |
+
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1", trust_remote_code=True)
|
17 |
+
|
18 |
+
# Function to query the Hugging Face Whisper model for audio transcription (API call)
|
19 |
def transcribe_audio(audio_file):
|
20 |
with open(audio_file, "rb") as f:
|
21 |
data = f.read()
|
|
|
22 |
response = requests.post(WHISPER_API_URL, headers=headers, data=data)
|
23 |
if response.status_code == 200:
|
24 |
return response.json().get("text", "Transcription not available.")
|
25 |
else:
|
26 |
return f"Error: {response.status_code}, {response.text}"
|
27 |
|
28 |
+
# Function to generate Mermaid.js code using DeepSeek-R1 model (local processing)
|
29 |
def generate_mermaid_code(prompt):
|
30 |
+
# Instruction included in the prompt to guide DeepSeek to generate valid MermaidJS code
|
31 |
+
deepseek_prompt = f"Generate all possible valid MermaidJS diagram code for the following: {prompt}"
|
32 |
+
|
33 |
+
# Using the DeepSeek model pipeline for text generation
|
34 |
+
response = pipe([{"role": "user", "content": deepseek_prompt}])
|
35 |
+
return response[0]["generated_text"].strip()
|
|
|
36 |
|
37 |
+
# Function to process text, audio, or both inputs
|
38 |
def process_input(input_type, text_input, audio_input):
|
39 |
if input_type == "Audio" and audio_input is not None:
|
40 |
+
# Transcribe audio using the Whisper API
|
41 |
transcription = transcribe_audio(audio_input)
|
42 |
+
# Generate Mermaid.js code from transcription using DeepSeek-R1
|
43 |
return generate_mermaid_code(transcription)
|
44 |
+
|
45 |
elif input_type == "Text" and text_input:
|
46 |
+
# Generate Mermaid.js code directly from text input using DeepSeek-R1
|
47 |
return generate_mermaid_code(text_input)
|
48 |
+
|
49 |
elif input_type == "Text and Audio" and text_input and audio_input is not None:
|
50 |
+
# Transcribe audio using the Whisper API
|
51 |
transcription = transcribe_audio(audio_input)
|
52 |
+
# Combine text input and transcription
|
53 |
combined_input = f"{text_input} and {transcription}"
|
54 |
+
# Generate Mermaid.js code using DeepSeek-R1
|
55 |
return generate_mermaid_code(combined_input)
|
56 |
+
|
57 |
else:
|
58 |
return "No valid input provided."
|
59 |
|
60 |
+
# Set up the Gradio interface
|
61 |
iface = gr.Interface(
|
62 |
fn=process_input,
|
63 |
inputs=[
|
|
|
72 |
description="Provide text, audio, or both. Mermaid.js code will be generated based on the text or audio input, or their combination."
|
73 |
)
|
74 |
|
75 |
+
# Launch the Gradio app
|
76 |
+
iface.launch()
|