genaibeauty's picture
Update app.py
a4c2d51 verified
raw
history blame
3.08 kB
import gradio as gr
from transformers import pipeline
import os
import requests
# Set up the Hugging Face API key for Whisper
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
# Set up the API URL for Whisper
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
# Set up headers for the Whisper API request
headers = {"Authorization": f"Bearer {api_key}"}
# Load the DeepSeek model using Gradio's load function from the registry
demo = gr.load(name="deepseek-ai/DeepSeek-R1", src="transformers_gradio.registry")
# Function to query the Hugging Face Whisper model for audio transcription (API call)
def transcribe_audio(audio_file):
with open(audio_file, "rb") as f:
data = f.read()
response = requests.post(WHISPER_API_URL, headers=headers, data=data)
if response.status_code == 200:
return response.json().get("text", "Transcription not available.")
else:
return f"Error: {response.status_code}, {response.text}"
# Function to generate Mermaid.js code using DeepSeek-R1 model
def generate_mermaid_code(prompt):
# Instruction included in the prompt to guide DeepSeek to generate valid MermaidJS code
deepseek_prompt = f"Generate a valid MermaidJS diagram code for the following: {prompt}"
# Use the loaded model `demo` to generate the MermaidJS code
response = demo(deepseek_prompt)
return response.strip()
# Function to process text, audio, or both inputs
def process_input(input_type, text_input, audio_input):
if input_type == "Audio" and audio_input is not None:
# Transcribe audio using the Whisper API
transcription = transcribe_audio(audio_input)
# Generate Mermaid.js code from transcription using DeepSeek-R1
return generate_mermaid_code(transcription)
elif input_type == "Text" and text_input:
# Generate Mermaid.js code directly from text input using DeepSeek-R1
return generate_mermaid_code(text_input)
elif input_type == "Text and Audio" and text_input and audio_input is not None:
# Transcribe audio using the Whisper API
transcription = transcribe_audio(audio_input)
# Combine text input and transcription
combined_input = f"{text_input} and {transcription}"
# Generate Mermaid.js code using DeepSeek-R1
return generate_mermaid_code(combined_input)
else:
return "No valid input provided."
# Set up the Gradio interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Radio(["Text", "Audio", "Text and Audio"], label="Input Type", value="Text"),
gr.Textbox(lines=10, label="Text Input", placeholder="Enter task flow description here..."),
gr.Audio(type="filepath", label="Audio Input")
],
outputs=[
gr.Textbox(lines=20, label="Generated Mermaid.js Code")
],
title="Mermaid.js Generator",
description="Provide text, audio, or both. Mermaid.js code will be generated based on the text or audio input, or their combination."
)
# Launch the Gradio app
iface.launch()