|
import streamlit as st
|
|
import pandas as pd
|
|
|
|
from ecologits.tracers.utils import llm_impacts
|
|
from src.impacts import get_impacts, display_impacts, display_equivalent
|
|
from src.utils import format_impacts
|
|
from src.content import WARNING_CLOSED_SOURCE, WARNING_MULTI_MODAL, WARNING_BOTH
|
|
from src.models import load_models, clean_models_data
|
|
|
|
from src.constants import PROMPTS
|
|
|
|
def calculator_mode():
|
|
|
|
with st.container(border=True):
|
|
|
|
df = load_models()
|
|
|
|
col1, col2, col3 = st.columns(3)
|
|
|
|
with col1:
|
|
provider = st.selectbox(label = 'Provider',
|
|
options = [x for x in df['provider_clean'].unique()],
|
|
index = 9)
|
|
provider_raw = df[df['provider_clean'] == provider]['provider'].values[0]
|
|
|
|
with col2:
|
|
model = st.selectbox('Model', [x for x in df['name_clean'].unique() if x in df[df['provider_clean'] == provider]['name_clean'].unique()])
|
|
model_raw = df[(df['provider_clean'] == provider) & (df['name_clean'] == model)]['name'].values[0]
|
|
|
|
with col3:
|
|
output_tokens = st.selectbox('Example prompt', [x[0] for x in PROMPTS])
|
|
|
|
|
|
|
|
df_filtered = df[(df['provider_clean'] == provider) & (df['name_clean'] == model)]
|
|
|
|
if df_filtered['warning_arch'].values[0] and not df_filtered['warning_multi_modal'].values[0]:
|
|
st.warning(WARNING_CLOSED_SOURCE)
|
|
if df_filtered['warning_multi_modal'].values[0] and not df_filtered['warning_arch'].values[0]:
|
|
st.warning(WARNING_MULTI_MODAL)
|
|
if df_filtered['warning_arch'].values[0] and df_filtered['warning_multi_modal'].values[0]:
|
|
st.warning(WARNING_BOTH)
|
|
|
|
try:
|
|
impacts = llm_impacts(
|
|
provider=provider_raw,
|
|
model_name=model_raw,
|
|
output_token_count=[x[1] for x in PROMPTS if x[0] == output_tokens][0],
|
|
request_latency=100000
|
|
)
|
|
|
|
impacts, _, _ = format_impacts(impacts)
|
|
|
|
with st.container(border=True):
|
|
|
|
st.markdown('<h3 align = "center">Environmental impacts</h3>', unsafe_allow_html=True)
|
|
st.markdown('<p align = "center">To understand how the environmental impacts are computed go to the 📖 Methodology tab.</p>', unsafe_allow_html=True)
|
|
display_impacts(impacts)
|
|
|
|
with st.container(border=True):
|
|
|
|
st.markdown('<h3 align = "center">That\'s equivalent to ...</h3>', unsafe_allow_html=True)
|
|
st.markdown('<p align = "center">Making this request to the LLM is equivalent to the following actions :</p>', unsafe_allow_html=True)
|
|
display_equivalent(impacts)
|
|
|
|
except Exception as e:
|
|
st.error('Could not find the model in the repository. Please try another model.') |