# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 from typing import Optional import ipdb import torch from torch import nn from torch.nn import functional as F from .triton_lite_mla_kernels.linear_relu_fwd import linear_relu_fwd from .triton_lite_mla_kernels.mm import matmul # for autocast from .triton_lite_mla_kernels.pad_vk_mm_fwd import pad_vk_mm_fwd from .triton_lite_mla_kernels.proj_divide_bwd import proj_divide_bwd from .triton_lite_mla_kernels.vk_mm_relu_bwd import vk_mm_relu_bwd from .triton_lite_mla_kernels.vk_q_mm_divide_fwd import vk_q_mm_divide_fwd from .triton_lite_mla_kernels.vk_q_mm_relu_bwd import vk_q_mm_relu_bwd class TritonLiteMLAFunction(torch.autograd.Function): @staticmethod def forward( ctx, x: torch.Tensor, qkv_weight: torch.Tensor, proj_weight: torch.Tensor, proj_bias: Optional[torch.Tensor], num_heads: int, head_dim: int, eps: float, ) -> torch.Tensor: ctx.x_dtype, ctx.qkv_weight_dtype, ctx.proj_dtype = x.dtype, qkv_weight.dtype, proj_weight.dtype if torch.is_autocast_enabled(): autocast_dtype = torch.get_autocast_gpu_dtype() x = x.to(autocast_dtype) qkv_weight = qkv_weight.to(autocast_dtype) proj_weight = proj_weight.to(autocast_dtype) if proj_bias is not None: proj_bias = proj_bias.to(autocast_dtype) B, N, C = x.shape qkv, relu_mask = linear_relu_fwd(x, qkv_weight) # B, N, 3*C. autocast is processed here qkv, relu_mask = qkv.view(B, N, 3, C), relu_mask.view(B, N, 3, C) q, k, v = qkv.unbind(2) # B, N, C k = k.reshape(B, N, num_heads, head_dim) v = v.reshape(B, N, num_heads, head_dim) q = q.reshape(B, N, num_heads, head_dim) vk = pad_vk_mm_fwd(v, k, torch.float, torch.float) proj_input, vk_q = vk_q_mm_divide_fwd(vk, q, eps, torch.float, qkv.dtype) proj_input = proj_input.view(B, N, C) y = F.linear(proj_input, proj_weight, proj_bias) if ctx.needs_input_grad[0] or ctx.needs_input_grad[1] or ctx.needs_input_grad[2] or ctx.needs_input_grad[3]: ctx.save_for_backward(x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight) ctx.eps = eps if torch.get_autocast_gpu_dtype() == torch.float16: y = y.clip(-65504, 65504) return y @staticmethod def backward(ctx, grad_y: torch.Tensor): x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight = ctx.saved_tensors B, N, H, C1 = vk_q.shape C = C1 - 1 # ipdb.set_trace() grad_proj_weight = ( (grad_y.reshape(-1, H * C).T @ proj_input.view(-1, H * C)).to(ctx.proj_dtype) if ctx.needs_input_grad[2] else None ) grad_proj_bias = grad_y.sum((0, 1)).to(ctx.proj_dtype) if ctx.needs_input_grad[3] else None # grad_vk_q = proj_divide_bwd(grad_y, proj_weight, vk_q, ctx.eps) del grad_y, vk_q grad_qkv = torch.empty(B, N, 3, H, C, dtype=q.dtype, device=q.device) grad_vk = vk_q_mm_relu_bwd(grad_vk_q, vk, q, relu_mask[:, :, 0].view(B, N, H, C), grad_qkv[:, :, 0]) del grad_vk_q, vk vk_mm_relu_bwd(grad_vk, k, v, relu_mask[:, :, 1].view(B, N, H, C), grad_qkv[:, :, 1], grad_qkv[:, :, 2]) del grad_vk, q, k, v, relu_mask grad_qkv_weight = ( (grad_qkv.view(B * N, 3 * H * C).T @ x.view(B * N, H * C)).to(ctx.qkv_weight_dtype) if ctx.needs_input_grad[1] else None ) grad_x = (grad_qkv.view(B, N, 3 * H * C) @ qkv_weight).to(ctx.x_dtype) if ctx.needs_input_grad[0] else None del grad_qkv return grad_x, grad_qkv_weight, grad_proj_weight, grad_proj_bias, None, None, None class TritonLiteMLA(nn.Module): def __init__( self, dim: int, num_heads: int, eps=1e-15, use_bias=False, ): super().__init__() self.dim, self.num_heads, self.head_dim, self.eps = dim, num_heads, dim // num_heads, eps if use_bias: raise NotImplementedError(f"use_bias is not supported for TritonLiteMLA") self.qkv = nn.Linear(dim, dim * 3, bias=use_bias) self.proj = nn.Linear(dim, dim) def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: return TritonLiteMLAFunction.apply( x, self.qkv.weight, self.proj.weight, self.proj.bias, self.num_heads, self.head_dim, self.eps ) @property def module_str(self) -> str: _str = type(self).__name__ + "(" eps = f"{self.eps:.1E}" _str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" return _str def __repr__(self): return f"EPS{self.eps}-" + super().__repr__()