# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import torch from torch import nn from .nn.act import build_act, get_act_name from .nn.conv import ConvLayer from .nn.norm import build_norm, get_norm_name from .utils.model import get_same_padding, val2tuple class MBConvPreGLU(nn.Module): def __init__( self, in_dim: int, out_dim: int, kernel_size=3, stride=1, mid_dim=None, expand=6, padding: int or None = None, use_bias=False, norm=(None, None, "ln2d"), act=("silu", "silu", None), ): super().__init__() use_bias = val2tuple(use_bias, 3) norm = val2tuple(norm, 3) act = val2tuple(act, 3) mid_dim = mid_dim or round(in_dim * expand) self.inverted_conv = ConvLayer( in_dim, mid_dim * 2, 1, use_bias=use_bias[0], norm=norm[0], act=None, ) self.glu_act = build_act(act[0], inplace=False) self.depth_conv = ConvLayer( mid_dim, mid_dim, kernel_size, stride=stride, groups=mid_dim, padding=padding, use_bias=use_bias[1], norm=norm[1], act=act[1], ) self.point_conv = ConvLayer( mid_dim, out_dim, 1, use_bias=use_bias[2], norm=norm[2], act=act[2], ) def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) x = self.inverted_conv(x) x, gate = torch.chunk(x, 2, dim=1) gate = self.glu_act(gate) x = x * gate x = self.depth_conv(x) x = self.point_conv(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x @property def module_str(self) -> str: _str = f"{self.depth_conv.kernel_size}{type(self).__name__}(" _str += f"in={self.inverted_conv.in_dim},mid={self.depth_conv.in_dim},out={self.point_conv.out_dim},s={self.depth_conv.stride}" _str += ( f",norm={get_norm_name(self.inverted_conv.norm)}" f"+{get_norm_name(self.depth_conv.norm)}" f"+{get_norm_name(self.point_conv.norm)}" ) _str += ( f",act={get_act_name(self.inverted_conv.act)}" f"+{get_act_name(self.depth_conv.act)}" f"+{get_act_name(self.point_conv.act)}" ) _str += f",glu_act={get_act_name(self.glu_act)})" return _str