|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
|
|
|
|
class NoiseScheduleVP: |
|
def __init__( |
|
self, |
|
schedule="discrete", |
|
betas=None, |
|
alphas_cumprod=None, |
|
continuous_beta_0=0.1, |
|
continuous_beta_1=20.0, |
|
dtype=torch.float32, |
|
): |
|
"""Thanks to DPM-Solver for their code base""" |
|
r"""Create a wrapper class for the forward SDE (VP type). |
|
*** |
|
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. |
|
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. |
|
*** |
|
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). |
|
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). |
|
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: |
|
log_alpha_t = self.marginal_log_mean_coeff(t) |
|
sigma_t = self.marginal_std(t) |
|
lambda_t = self.marginal_lambda(t) |
|
Moreover, as lambda(t) is an invertible function, we also support its inverse function: |
|
t = self.inverse_lambda(lambda_t) |
|
=============================================================== |
|
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). |
|
1. For discrete-time DPMs: |
|
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: |
|
t_i = (i + 1) / N |
|
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. |
|
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. |
|
Args: |
|
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) |
|
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) |
|
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. |
|
**Important**: Please pay special attention for the args for `alphas_cumprod`: |
|
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that |
|
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). |
|
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have |
|
alpha_{t_n} = \sqrt{\hat{alpha_n}}, |
|
and |
|
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). |
|
2. For continuous-time DPMs: |
|
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise |
|
schedule are the default settings in DDPM and improved-DDPM: |
|
Args: |
|
beta_min: A `float` number. The smallest beta for the linear schedule. |
|
beta_max: A `float` number. The largest beta for the linear schedule. |
|
cosine_s: A `float` number. The hyperparameter in the cosine schedule. |
|
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. |
|
T: A `float` number. The ending time of the forward process. |
|
=============================================================== |
|
Args: |
|
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, |
|
'linear' or 'cosine' for continuous-time DPMs. |
|
Returns: |
|
A wrapper object of the forward SDE (VP type). |
|
|
|
=============================================================== |
|
Example: |
|
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): |
|
>>> ns = NoiseScheduleVP('discrete', betas=betas) |
|
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): |
|
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) |
|
# For continuous-time DPMs (VPSDE), linear schedule: |
|
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) |
|
""" |
|
|
|
if schedule not in ["discrete", "linear", "cosine"]: |
|
raise ValueError( |
|
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( |
|
schedule |
|
) |
|
) |
|
|
|
self.schedule = schedule |
|
if schedule == "discrete": |
|
if betas is not None: |
|
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) |
|
else: |
|
assert alphas_cumprod is not None |
|
log_alphas = 0.5 * torch.log(alphas_cumprod) |
|
self.total_N = len(log_alphas) |
|
self.T = 1.0 |
|
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype) |
|
self.log_alpha_array = log_alphas.reshape( |
|
( |
|
1, |
|
-1, |
|
) |
|
).to(dtype=dtype) |
|
else: |
|
self.total_N = 1000 |
|
self.beta_0 = continuous_beta_0 |
|
self.beta_1 = continuous_beta_1 |
|
self.cosine_s = 0.008 |
|
self.cosine_beta_max = 999.0 |
|
self.cosine_t_max = ( |
|
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) |
|
* 2.0 |
|
* (1.0 + self.cosine_s) |
|
/ math.pi |
|
- self.cosine_s |
|
) |
|
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
self.schedule = schedule |
|
if schedule == "cosine": |
|
|
|
|
|
self.T = 0.9946 |
|
else: |
|
self.T = 1.0 |
|
|
|
def marginal_log_mean_coeff(self, t): |
|
""" |
|
Compute log(alpha_t) of a given continuous-time label t in [0, T]. |
|
""" |
|
if self.schedule == "discrete": |
|
return interpolate_fn( |
|
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) |
|
).reshape(-1) |
|
elif self.schedule == "linear": |
|
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 |
|
elif self.schedule == "cosine": |
|
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 |
|
return log_alpha_t |
|
|
|
def marginal_alpha(self, t): |
|
""" |
|
Compute alpha_t of a given continuous-time label t in [0, T]. |
|
""" |
|
return torch.exp(self.marginal_log_mean_coeff(t)) |
|
|
|
def marginal_std(self, t): |
|
""" |
|
Compute sigma_t of a given continuous-time label t in [0, T]. |
|
""" |
|
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) |
|
|
|
def marginal_lambda(self, t): |
|
""" |
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. |
|
""" |
|
log_mean_coeff = self.marginal_log_mean_coeff(t) |
|
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) |
|
return log_mean_coeff - log_std |
|
|
|
def inverse_lambda(self, lamb): |
|
""" |
|
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. |
|
""" |
|
if self.schedule == "linear": |
|
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
Delta = self.beta_0**2 + tmp |
|
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) |
|
elif self.schedule == "discrete": |
|
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) |
|
t = interpolate_fn( |
|
log_alpha.reshape((-1, 1)), |
|
torch.flip(self.log_alpha_array.to(lamb.device), [1]), |
|
torch.flip(self.t_array.to(lamb.device), [1]), |
|
) |
|
return t.reshape((-1,)) |
|
else: |
|
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
t_fn = ( |
|
lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) |
|
* 2.0 |
|
* (1.0 + self.cosine_s) |
|
/ math.pi |
|
- self.cosine_s |
|
) |
|
t = t_fn(log_alpha) |
|
return t |
|
|
|
def edm_sigma(self, t): |
|
return self.marginal_std(t) / self.marginal_alpha(t) |
|
|
|
def edm_inverse_sigma(self, edmsigma): |
|
alpha = 1 / (edmsigma**2 + 1).sqrt() |
|
sigma = alpha * edmsigma |
|
lambda_t = torch.log(alpha / sigma) |
|
t = self.inverse_lambda(lambda_t) |
|
return t |
|
|
|
|
|
def model_wrapper( |
|
model, |
|
noise_schedule, |
|
model_type="noise", |
|
model_kwargs={}, |
|
guidance_type="uncond", |
|
condition=None, |
|
unconditional_condition=None, |
|
guidance_scale=1.0, |
|
classifier_fn=None, |
|
classifier_kwargs={}, |
|
): |
|
"""Thanks to DPM-Solver for their code base""" |
|
"""Create a wrapper function for the noise prediction model. |
|
SA-Solver needs to solve the continuous-time diffusion SDEs. For DPMs trained on discrete-time labels, we need to |
|
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. |
|
We support four types of the diffusion model by setting `model_type`: |
|
1. "noise": noise prediction model. (Trained by predicting noise). |
|
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). |
|
3. "v": velocity prediction model. (Trained by predicting the velocity). |
|
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. |
|
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." |
|
arXiv preprint arXiv:2202.00512 (2022). |
|
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." |
|
arXiv preprint arXiv:2210.02303 (2022). |
|
|
|
4. "score": marginal score function. (Trained by denoising score matching). |
|
Note that the score function and the noise prediction model follows a simple relationship: |
|
``` |
|
noise(x_t, t) = -sigma_t * score(x_t, t) |
|
``` |
|
We support three types of guided sampling by DPMs by setting `guidance_type`: |
|
1. "uncond": unconditional sampling by DPMs. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
The input `classifier_fn` has the following format: |
|
`` |
|
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) |
|
`` |
|
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," |
|
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. |
|
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. |
|
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." |
|
arXiv preprint arXiv:2207.12598 (2022). |
|
|
|
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) |
|
or continuous-time labels (i.e. epsilon to T). |
|
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: |
|
`` |
|
def model_fn(x, t_continuous) -> noise: |
|
t_input = get_model_input_time(t_continuous) |
|
return noise_pred(model, x, t_input, **model_kwargs) |
|
`` |
|
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for SA-Solver. |
|
=============================================================== |
|
Args: |
|
model: A diffusion model with the corresponding format described above. |
|
noise_schedule: A noise schedule object, such as NoiseScheduleVP. |
|
model_type: A `str`. The parameterization type of the diffusion model. |
|
"noise" or "x_start" or "v" or "score". |
|
model_kwargs: A `dict`. A dict for the other inputs of the model function. |
|
guidance_type: A `str`. The type of the guidance for sampling. |
|
"uncond" or "classifier" or "classifier-free". |
|
condition: A pytorch tensor. The condition for the guided sampling. |
|
Only used for "classifier" or "classifier-free" guidance type. |
|
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. |
|
Only used for "classifier-free" guidance type. |
|
guidance_scale: A `float`. The scale for the guided sampling. |
|
classifier_fn: A classifier function. Only used for the classifier guidance. |
|
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. |
|
Returns: |
|
A noise prediction model that accepts the noised data and the continuous time as the inputs. |
|
""" |
|
|
|
def get_model_input_time(t_continuous): |
|
""" |
|
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. |
|
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. |
|
For continuous-time DPMs, we just use `t_continuous`. |
|
""" |
|
if noise_schedule.schedule == "discrete": |
|
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 |
|
else: |
|
return t_continuous |
|
|
|
def noise_pred_fn(x, t_continuous, cond=None): |
|
t_input = get_model_input_time(t_continuous) |
|
if cond is None: |
|
output = model(x, t_input, **model_kwargs) |
|
else: |
|
output = model(x, t_input, cond, **model_kwargs) |
|
if model_type == "noise": |
|
return output |
|
elif model_type == "x_start": |
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
return (x - alpha_t[0] * output) / sigma_t[0] |
|
elif model_type == "v": |
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
return alpha_t[0] * output + sigma_t[0] * x |
|
elif model_type == "score": |
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
return -sigma_t[0] * output |
|
|
|
def cond_grad_fn(x, t_input): |
|
""" |
|
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). |
|
""" |
|
with torch.enable_grad(): |
|
x_in = x.detach().requires_grad_(True) |
|
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) |
|
return torch.autograd.grad(log_prob.sum(), x_in)[0] |
|
|
|
def model_fn(x, t_continuous): |
|
""" |
|
The noise predicition model function that is used for DPM-Solver. |
|
""" |
|
if guidance_type == "uncond": |
|
return noise_pred_fn(x, t_continuous) |
|
elif guidance_type == "classifier": |
|
assert classifier_fn is not None |
|
t_input = get_model_input_time(t_continuous) |
|
cond_grad = cond_grad_fn(x, t_input) |
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
noise = noise_pred_fn(x, t_continuous) |
|
return noise - guidance_scale * sigma_t * cond_grad |
|
elif guidance_type == "classifier-free": |
|
if guidance_scale == 1.0 or unconditional_condition is None: |
|
return noise_pred_fn(x, t_continuous, cond=condition) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t_continuous] * 2) |
|
c_in = torch.cat([unconditional_condition, condition]) |
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) |
|
return noise_uncond + guidance_scale * (noise - noise_uncond) |
|
|
|
assert model_type in ["noise", "x_start", "v", "score"] |
|
assert guidance_type in ["uncond", "classifier", "classifier-free"] |
|
return model_fn |
|
|
|
|
|
class SASolver: |
|
def __init__( |
|
self, |
|
model_fn, |
|
noise_schedule, |
|
algorithm_type="data_prediction", |
|
correcting_x0_fn=None, |
|
correcting_xt_fn=None, |
|
thresholding_max_val=1.0, |
|
dynamic_thresholding_ratio=0.995, |
|
): |
|
""" |
|
Construct a SA-Solver |
|
The default value for algorithm_type is "data_prediction" and we recommend not to change it to |
|
"noise_prediction". For details, please see Appendix A.2.4 in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
""" |
|
|
|
self.model = lambda x, t: model_fn(x, t.expand(x.shape[0])) |
|
self.noise_schedule = noise_schedule |
|
assert algorithm_type in ["data_prediction", "noise_prediction"] |
|
|
|
if correcting_x0_fn == "dynamic_thresholding": |
|
self.correcting_x0_fn = self.dynamic_thresholding_fn |
|
else: |
|
self.correcting_x0_fn = correcting_x0_fn |
|
|
|
self.correcting_xt_fn = correcting_xt_fn |
|
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio |
|
self.thresholding_max_val = thresholding_max_val |
|
|
|
self.predict_x0 = algorithm_type == "data_prediction" |
|
|
|
self.sigma_min = float(self.noise_schedule.edm_sigma(torch.tensor([1e-3]))) |
|
self.sigma_max = float(self.noise_schedule.edm_sigma(torch.tensor([1]))) |
|
|
|
def dynamic_thresholding_fn(self, x0, t=None): |
|
""" |
|
The dynamic thresholding method. |
|
""" |
|
dims = x0.dim() |
|
p = self.dynamic_thresholding_ratio |
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) |
|
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) |
|
x0 = torch.clamp(x0, -s, s) / s |
|
return x0 |
|
|
|
def noise_prediction_fn(self, x, t): |
|
""" |
|
Return the noise prediction model. |
|
""" |
|
return self.model(x, t) |
|
|
|
def data_prediction_fn(self, x, t): |
|
""" |
|
Return the data prediction model (with corrector). |
|
""" |
|
noise = self.noise_prediction_fn(x, t) |
|
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) |
|
x0 = (x - sigma_t * noise) / alpha_t |
|
if self.correcting_x0_fn is not None: |
|
x0 = self.correcting_x0_fn(x0) |
|
return x0 |
|
|
|
def model_fn(self, x, t): |
|
""" |
|
Convert the model to the noise prediction model or the data prediction model. |
|
""" |
|
|
|
if self.predict_x0: |
|
return self.data_prediction_fn(x, t) |
|
else: |
|
return self.noise_prediction_fn(x, t) |
|
|
|
def get_time_steps(self, skip_type, t_T, t_0, N, order, device): |
|
"""Compute the intermediate time steps for sampling.""" |
|
if skip_type == "logSNR": |
|
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) |
|
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) |
|
logSNR_steps = lambda_T + torch.linspace( |
|
torch.tensor(0.0).cpu().item(), (lambda_0 - lambda_T).cpu().item() ** (1.0 / order), N + 1 |
|
).pow(order).to(device) |
|
return self.noise_schedule.inverse_lambda(logSNR_steps) |
|
elif skip_type == "time": |
|
t = torch.linspace(t_T ** (1.0 / order), t_0 ** (1.0 / order), N + 1).pow(order).to(device) |
|
return t |
|
elif skip_type == "karras": |
|
sigma_min = max(0.002, self.sigma_min) |
|
sigma_max = min(80, self.sigma_max) |
|
sigma_steps = torch.linspace(sigma_max ** (1.0 / 7), sigma_min ** (1.0 / 7), N + 1).pow(7).to(device) |
|
t = self.noise_schedule.edm_inverse_sigma(sigma_steps) |
|
return t |
|
else: |
|
raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time' or 'karras'") |
|
|
|
def denoise_to_zero_fn(self, x, s): |
|
""" |
|
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. |
|
""" |
|
return self.data_prediction_fn(x, s) |
|
|
|
def get_coefficients_exponential_negative(self, order, interval_start, interval_end): |
|
""" |
|
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end |
|
For calculating the coefficient of gradient terms after the lagrange interpolation, |
|
see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
For noise_prediction formula. |
|
""" |
|
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" |
|
|
|
if order == 0: |
|
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) |
|
elif order == 1: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1) |
|
) |
|
elif order == 2: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) |
|
- (interval_end**2 + 2 * interval_end + 2) |
|
) |
|
elif order == 3: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6) |
|
* torch.exp(interval_end - interval_start) |
|
- (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6) |
|
) |
|
|
|
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): |
|
""" |
|
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end |
|
For calculating the coefficient of gradient terms after the lagrange interpolation, |
|
see Eq.(15) and Eq.(18) in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
For data_prediction formula. |
|
""" |
|
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" |
|
|
|
|
|
interval_end_cov = (1 + tau**2) * interval_end |
|
interval_start_cov = (1 + tau**2) * interval_start |
|
|
|
if order == 0: |
|
return ( |
|
torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2) |
|
) |
|
elif order == 1: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov - 1) |
|
- (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 2) |
|
) |
|
elif order == 2: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov**2 - 2 * interval_end_cov + 2) |
|
- (interval_start_cov**2 - 2 * interval_start_cov + 2) |
|
* torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 3) |
|
) |
|
elif order == 3: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6) |
|
- (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6) |
|
* torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 4) |
|
) |
|
|
|
def lagrange_polynomial_coefficient(self, order, lambda_list): |
|
""" |
|
Calculate the coefficient of lagrange polynomial |
|
For lagrange interpolation |
|
""" |
|
assert order in [0, 1, 2, 3] |
|
assert order == len(lambda_list) - 1 |
|
if order == 0: |
|
return [[1]] |
|
elif order == 1: |
|
return [ |
|
[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])], |
|
[1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])], |
|
] |
|
elif order == 2: |
|
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) |
|
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) |
|
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) |
|
return [ |
|
[ |
|
1 / denominator1, |
|
(-lambda_list[1] - lambda_list[2]) / denominator1, |
|
lambda_list[1] * lambda_list[2] / denominator1, |
|
], |
|
[ |
|
1 / denominator2, |
|
(-lambda_list[0] - lambda_list[2]) / denominator2, |
|
lambda_list[0] * lambda_list[2] / denominator2, |
|
], |
|
[ |
|
1 / denominator3, |
|
(-lambda_list[0] - lambda_list[1]) / denominator3, |
|
lambda_list[0] * lambda_list[1] / denominator3, |
|
], |
|
] |
|
elif order == 3: |
|
denominator1 = ( |
|
(lambda_list[0] - lambda_list[1]) |
|
* (lambda_list[0] - lambda_list[2]) |
|
* (lambda_list[0] - lambda_list[3]) |
|
) |
|
denominator2 = ( |
|
(lambda_list[1] - lambda_list[0]) |
|
* (lambda_list[1] - lambda_list[2]) |
|
* (lambda_list[1] - lambda_list[3]) |
|
) |
|
denominator3 = ( |
|
(lambda_list[2] - lambda_list[0]) |
|
* (lambda_list[2] - lambda_list[1]) |
|
* (lambda_list[2] - lambda_list[3]) |
|
) |
|
denominator4 = ( |
|
(lambda_list[3] - lambda_list[0]) |
|
* (lambda_list[3] - lambda_list[1]) |
|
* (lambda_list[3] - lambda_list[2]) |
|
) |
|
return [ |
|
[ |
|
1 / denominator1, |
|
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, |
|
( |
|
lambda_list[1] * lambda_list[2] |
|
+ lambda_list[1] * lambda_list[3] |
|
+ lambda_list[2] * lambda_list[3] |
|
) |
|
/ denominator1, |
|
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1, |
|
], |
|
[ |
|
1 / denominator2, |
|
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, |
|
( |
|
lambda_list[0] * lambda_list[2] |
|
+ lambda_list[0] * lambda_list[3] |
|
+ lambda_list[2] * lambda_list[3] |
|
) |
|
/ denominator2, |
|
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2, |
|
], |
|
[ |
|
1 / denominator3, |
|
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, |
|
( |
|
lambda_list[0] * lambda_list[1] |
|
+ lambda_list[0] * lambda_list[3] |
|
+ lambda_list[1] * lambda_list[3] |
|
) |
|
/ denominator3, |
|
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3, |
|
], |
|
[ |
|
1 / denominator4, |
|
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, |
|
( |
|
lambda_list[0] * lambda_list[1] |
|
+ lambda_list[0] * lambda_list[2] |
|
+ lambda_list[1] * lambda_list[2] |
|
) |
|
/ denominator4, |
|
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4, |
|
], |
|
] |
|
|
|
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): |
|
""" |
|
Calculate the coefficient of gradients. |
|
""" |
|
assert order in [1, 2, 3, 4] |
|
assert order == len(lambda_list), "the length of lambda list must be equal to the order" |
|
coefficients = [] |
|
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) |
|
for i in range(order): |
|
coefficient = 0 |
|
for j in range(order): |
|
if self.predict_x0: |
|
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive( |
|
order - 1 - j, interval_start, interval_end, tau |
|
) |
|
else: |
|
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative( |
|
order - 1 - j, interval_start, interval_end |
|
) |
|
coefficients.append(coefficient) |
|
assert len(coefficients) == order, "the length of coefficients does not match the order" |
|
return coefficients |
|
|
|
def adams_bashforth_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): |
|
""" |
|
SA-Predictor, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
""" |
|
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" |
|
|
|
|
|
ns = self.noise_schedule |
|
alpha_t = ns.marginal_alpha(t) |
|
sigma_t = ns.marginal_std(t) |
|
lambda_t = ns.marginal_lambda(t) |
|
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) |
|
sigma_prev = ns.marginal_std(t_prev_list[-1]) |
|
gradient_part = torch.zeros_like(x) |
|
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) |
|
lambda_list = [] |
|
for i in range(order): |
|
lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) |
|
gradient_coefficients = self.get_coefficients_fn( |
|
order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_prev_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part |
|
|
|
return x_t |
|
|
|
def adams_moulton_update(self, order, x, tau, model_prev_list, t_prev_list, noise, t): |
|
""" |
|
SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
""" |
|
|
|
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" |
|
|
|
|
|
ns = self.noise_schedule |
|
alpha_t = ns.marginal_alpha(t) |
|
sigma_t = ns.marginal_std(t) |
|
lambda_t = ns.marginal_lambda(t) |
|
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) |
|
sigma_prev = ns.marginal_std(t_prev_list[-1]) |
|
gradient_part = torch.zeros_like(x) |
|
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) |
|
lambda_list = [] |
|
t_list = t_prev_list + [t] |
|
for i in range(order): |
|
lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) |
|
gradient_coefficients = self.get_coefficients_fn( |
|
order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_prev_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part |
|
|
|
return x_t |
|
|
|
def adams_bashforth_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): |
|
""" |
|
SA-Predictor, with the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
""" |
|
|
|
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" |
|
|
|
|
|
ns = self.noise_schedule |
|
alpha_t = ns.marginal_alpha(t) |
|
sigma_t = ns.marginal_std(t) |
|
lambda_t = ns.marginal_lambda(t) |
|
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) |
|
sigma_prev = ns.marginal_std(t_prev_list[-1]) |
|
gradient_part = torch.zeros_like(x) |
|
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) |
|
lambda_list = [] |
|
for i in range(order): |
|
lambda_list.append(ns.marginal_lambda(t_prev_list[-(i + 1)])) |
|
gradient_coefficients = self.get_coefficients_fn( |
|
order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau |
|
) |
|
|
|
if self.predict_x0: |
|
if ( |
|
order == 2 |
|
): |
|
|
|
|
|
|
|
|
|
gradient_coefficients[0] += ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) |
|
/ (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) |
|
) |
|
gradient_coefficients[1] -= ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) |
|
/ (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_prev_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part |
|
|
|
return x_t |
|
|
|
def adams_moulton_update_few_steps(self, order, x, tau, model_prev_list, t_prev_list, noise, t): |
|
""" |
|
SA-Corrector, without the "rescaling" trick in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
""" |
|
|
|
assert order in [1, 2, 3, 4], "order of stochastic adams bashforth method is only supported for 1, 2, 3 and 4" |
|
|
|
|
|
ns = self.noise_schedule |
|
alpha_t = ns.marginal_alpha(t) |
|
sigma_t = ns.marginal_std(t) |
|
lambda_t = ns.marginal_lambda(t) |
|
alpha_prev = ns.marginal_alpha(t_prev_list[-1]) |
|
sigma_prev = ns.marginal_std(t_prev_list[-1]) |
|
gradient_part = torch.zeros_like(x) |
|
h = lambda_t - ns.marginal_lambda(t_prev_list[-1]) |
|
lambda_list = [] |
|
t_list = t_prev_list + [t] |
|
for i in range(order): |
|
lambda_list.append(ns.marginal_lambda(t_list[-(i + 1)])) |
|
gradient_coefficients = self.get_coefficients_fn( |
|
order, ns.marginal_lambda(t_prev_list[-1]), lambda_t, lambda_list, tau |
|
) |
|
|
|
if self.predict_x0: |
|
if ( |
|
order == 2 |
|
): |
|
|
|
|
|
|
|
|
|
gradient_coefficients[0] += ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) |
|
) |
|
gradient_coefficients[1] -= ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_prev_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_prev) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_prev) * x + gradient_part + noise_part |
|
|
|
return x_t |
|
|
|
def sample_few_steps( |
|
self, |
|
x, |
|
tau, |
|
steps=5, |
|
t_start=None, |
|
t_end=None, |
|
skip_type="time", |
|
skip_order=1, |
|
predictor_order=3, |
|
corrector_order=4, |
|
pc_mode="PEC", |
|
return_intermediate=False, |
|
): |
|
""" |
|
For the PC-mode, please refer to the wiki page |
|
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode |
|
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations |
|
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. |
|
""" |
|
|
|
skip_first_step = False |
|
skip_final_step = True |
|
lower_order_final = True |
|
denoise_to_zero = False |
|
|
|
assert pc_mode in ["PEC", "PECE"], "Predictor-corrector mode only supports PEC and PECE" |
|
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end |
|
t_T = self.noise_schedule.T if t_start is None else t_start |
|
assert ( |
|
t_0 > 0 and t_T > 0 |
|
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" |
|
|
|
device = x.device |
|
intermediates = [] |
|
with torch.no_grad(): |
|
assert steps >= max(predictor_order, corrector_order - 1) |
|
timesteps = self.get_time_steps( |
|
skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, device=device |
|
) |
|
assert timesteps.shape[0] - 1 == steps |
|
|
|
step = 0 |
|
t = timesteps[step] |
|
noise = torch.randn_like(x) |
|
t_prev_list = [t] |
|
|
|
if skip_first_step: |
|
if self.predict_x0: |
|
alpha_t = self.noise_schedule.marginal_alpha(t) |
|
sigma_t = self.noise_schedule.marginal_std(t) |
|
model_prev_list = [(1 - sigma_t) / alpha_t * x] |
|
else: |
|
model_prev_list = [x] |
|
else: |
|
model_prev_list = [self.model_fn(x, t)] |
|
|
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
|
|
for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): |
|
|
|
t = timesteps[step] |
|
predictor_order_used = min(predictor_order, step) |
|
corrector_order_used = min(corrector_order, step + 1) |
|
noise = torch.randn_like(x) |
|
|
|
x_p = self.adams_bashforth_update_few_steps( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
|
|
model_x = self.model_fn(x_p, t) |
|
|
|
|
|
model_prev_list.append(model_x) |
|
|
|
if corrector_order > 0: |
|
x = self.adams_moulton_update_few_steps( |
|
order=corrector_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x = x_p |
|
|
|
|
|
if corrector_order > 0: |
|
if pc_mode == "PECE": |
|
model_x = self.model_fn(x, t) |
|
del model_prev_list[-1] |
|
model_prev_list.append(model_x) |
|
|
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
t_prev_list.append(t) |
|
|
|
for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): |
|
if lower_order_final: |
|
predictor_order_used = min(predictor_order, steps - step + 1) |
|
corrector_order_used = min(corrector_order, steps - step + 2) |
|
|
|
else: |
|
predictor_order_used = predictor_order |
|
corrector_order_used = corrector_order |
|
t = timesteps[step] |
|
noise = torch.randn_like(x) |
|
|
|
|
|
if skip_final_step and step == steps and not denoise_to_zero: |
|
x_p = self.adams_bashforth_update_few_steps( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=0, |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x_p = self.adams_bashforth_update_few_steps( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
|
|
|
|
|
|
if not skip_final_step or step < steps: |
|
model_x = self.model_fn(x_p, t) |
|
|
|
|
|
|
|
if not skip_final_step or step < steps: |
|
model_prev_list.append(model_x) |
|
|
|
|
|
|
|
if corrector_order > 0: |
|
if not skip_final_step or step < steps: |
|
x = self.adams_moulton_update_few_steps( |
|
order=corrector_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x = x_p |
|
else: |
|
x = x_p |
|
|
|
|
|
if corrector_order > 0: |
|
if pc_mode == "PECE" and step < steps: |
|
model_x = self.model_fn(x, t) |
|
del model_prev_list[-1] |
|
model_prev_list.append(model_x) |
|
|
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
t_prev_list.append(t) |
|
del model_prev_list[0] |
|
|
|
if denoise_to_zero: |
|
t = torch.ones((1,)).to(device) * t_0 |
|
x = self.denoise_to_zero_fn(x, t) |
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step + 1) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
if return_intermediate: |
|
return x, intermediates |
|
else: |
|
return x |
|
|
|
def sample_more_steps( |
|
self, |
|
x, |
|
tau, |
|
steps=20, |
|
t_start=None, |
|
t_end=None, |
|
skip_type="time", |
|
skip_order=1, |
|
predictor_order=3, |
|
corrector_order=4, |
|
pc_mode="PEC", |
|
return_intermediate=False, |
|
): |
|
""" |
|
For the PC-mode, please refer to the wiki page |
|
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode |
|
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations |
|
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. |
|
""" |
|
|
|
skip_first_step = False |
|
skip_final_step = False |
|
lower_order_final = True |
|
denoise_to_zero = True |
|
|
|
assert pc_mode in ["PEC", "PECE"], "Predictor-corrector mode only supports PEC and PECE" |
|
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end |
|
t_T = self.noise_schedule.T if t_start is None else t_start |
|
assert ( |
|
t_0 > 0 and t_T > 0 |
|
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" |
|
|
|
device = x.device |
|
intermediates = [] |
|
with torch.no_grad(): |
|
assert steps >= max(predictor_order, corrector_order - 1) |
|
timesteps = self.get_time_steps( |
|
skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, order=skip_order, device=device |
|
) |
|
assert timesteps.shape[0] - 1 == steps |
|
|
|
step = 0 |
|
t = timesteps[step] |
|
noise = torch.randn_like(x) |
|
t_prev_list = [t] |
|
|
|
if skip_first_step: |
|
if self.predict_x0: |
|
alpha_t = self.noise_schedule.marginal_alpha(t) |
|
sigma_t = self.noise_schedule.marginal_std(t) |
|
model_prev_list = [(1 - sigma_t) / alpha_t * x] |
|
else: |
|
model_prev_list = [x] |
|
else: |
|
model_prev_list = [self.model_fn(x, t)] |
|
|
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
|
|
for step in tqdm(range(1, max(predictor_order, corrector_order - 1))): |
|
|
|
t = timesteps[step] |
|
predictor_order_used = min(predictor_order, step) |
|
corrector_order_used = min(corrector_order, step + 1) |
|
noise = torch.randn_like(x) |
|
|
|
x_p = self.adams_bashforth_update( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
|
|
model_x = self.model_fn(x_p, t) |
|
|
|
|
|
model_prev_list.append(model_x) |
|
|
|
if corrector_order > 0: |
|
x = self.adams_moulton_update( |
|
order=corrector_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x = x_p |
|
|
|
|
|
if corrector_order > 0: |
|
if pc_mode == "PECE": |
|
model_x = self.model_fn(x, t) |
|
del model_prev_list[-1] |
|
model_prev_list.append(model_x) |
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
t_prev_list.append(t) |
|
|
|
for step in tqdm(range(max(predictor_order, corrector_order - 1), steps + 1)): |
|
if lower_order_final: |
|
predictor_order_used = min(predictor_order, steps - step + 1) |
|
corrector_order_used = min(corrector_order, steps - step + 2) |
|
|
|
else: |
|
predictor_order_used = predictor_order |
|
corrector_order_used = corrector_order |
|
t = timesteps[step] |
|
noise = torch.randn_like(x) |
|
|
|
|
|
if skip_final_step and step == steps and not denoise_to_zero: |
|
x_p = self.adams_bashforth_update( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=0, |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x_p = self.adams_bashforth_update( |
|
order=predictor_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
|
|
|
|
|
|
if not skip_final_step or step < steps: |
|
model_x = self.model_fn(x_p, t) |
|
|
|
|
|
|
|
if not skip_final_step or step < steps: |
|
model_prev_list.append(model_x) |
|
|
|
|
|
|
|
if corrector_order > 0: |
|
if not skip_final_step or step < steps: |
|
x = self.adams_moulton_update( |
|
order=corrector_order_used, |
|
x=x, |
|
tau=tau(t), |
|
model_prev_list=model_prev_list, |
|
t_prev_list=t_prev_list, |
|
noise=noise, |
|
t=t, |
|
) |
|
else: |
|
x = x_p |
|
else: |
|
x = x_p |
|
|
|
|
|
if corrector_order > 0: |
|
if pc_mode == "PECE" and step < steps: |
|
model_x = self.model_fn(x, t) |
|
del model_prev_list[-1] |
|
model_prev_list.append(model_x) |
|
|
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
|
|
t_prev_list.append(t) |
|
del model_prev_list[0] |
|
|
|
if denoise_to_zero: |
|
t = torch.ones((1,)).to(device) * t_0 |
|
x = self.denoise_to_zero_fn(x, t) |
|
if self.correcting_xt_fn is not None: |
|
x = self.correcting_xt_fn(x, t, step + 1) |
|
if return_intermediate: |
|
intermediates.append(x) |
|
if return_intermediate: |
|
return x, intermediates |
|
else: |
|
return x |
|
|
|
def sample( |
|
self, |
|
mode, |
|
x, |
|
tau, |
|
steps, |
|
t_start=None, |
|
t_end=None, |
|
skip_type="time", |
|
skip_order=1, |
|
predictor_order=3, |
|
corrector_order=4, |
|
pc_mode="PEC", |
|
return_intermediate=False, |
|
): |
|
""" |
|
For the PC-mode, please refer to the wiki page |
|
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method#PEC_mode_and_PECE_mode |
|
'PEC' needs one model evaluation per step while 'PECE' needs two model evaluations |
|
We recommend use pc_mode='PEC' for NFEs is limited. 'PECE' mode is only for test with sufficient NFEs. |
|
|
|
'few_steps' mode is recommended. The differences between 'few_steps' and 'more_steps' are as below: |
|
1) 'few_steps' do not correct at final step and do not denoise to zero, while 'more_steps' do these two. |
|
Thus the NFEs for 'few_steps' = steps, NFEs for 'more_steps' = steps + 2 |
|
For most of the experiments and tasks, we find these two operations do not have much help to sample quality. |
|
2) 'few_steps' use a rescaling trick as in Appendix D in SA-Solver paper https://arxiv.org/pdf/2309.05019.pdf |
|
We find it will slightly improve the sample quality especially in few steps. |
|
""" |
|
assert mode in ["few_steps", "more_steps"], "mode must be either 'few_steps' or 'more_steps'" |
|
if mode == "few_steps": |
|
return self.sample_few_steps( |
|
x=x, |
|
tau=tau, |
|
steps=steps, |
|
t_start=t_start, |
|
t_end=t_end, |
|
skip_type=skip_type, |
|
skip_order=skip_order, |
|
predictor_order=predictor_order, |
|
corrector_order=corrector_order, |
|
pc_mode=pc_mode, |
|
return_intermediate=return_intermediate, |
|
) |
|
else: |
|
return self.sample_more_steps( |
|
x=x, |
|
tau=tau, |
|
steps=steps, |
|
t_start=t_start, |
|
t_end=t_end, |
|
skip_type=skip_type, |
|
skip_order=skip_order, |
|
predictor_order=predictor_order, |
|
corrector_order=corrector_order, |
|
pc_mode=pc_mode, |
|
return_intermediate=return_intermediate, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_fn(x, xp, yp): |
|
""" |
|
A piecewise linear function y = f(x), using xp and yp as keypoints. |
|
We implement f(x) in a differentiable way (i.e. applicable for autograd). |
|
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) |
|
Args: |
|
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). |
|
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. |
|
yp: PyTorch tensor with shape [C, K]. |
|
Returns: |
|
The function values f(x), with shape [N, C]. |
|
""" |
|
N, K = x.shape[0], xp.shape[1] |
|
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) |
|
sorted_all_x, x_indices = torch.sort(all_x, dim=2) |
|
x_idx = torch.argmin(x_indices, dim=2) |
|
cand_start_idx = x_idx - 1 |
|
start_idx = torch.where( |
|
torch.eq(x_idx, 0), |
|
torch.tensor(1, device=x.device), |
|
torch.where( |
|
torch.eq(x_idx, K), |
|
torch.tensor(K - 2, device=x.device), |
|
cand_start_idx, |
|
), |
|
) |
|
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) |
|
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) |
|
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) |
|
start_idx2 = torch.where( |
|
torch.eq(x_idx, 0), |
|
torch.tensor(0, device=x.device), |
|
torch.where( |
|
torch.eq(x_idx, K), |
|
torch.tensor(K - 2, device=x.device), |
|
cand_start_idx, |
|
), |
|
) |
|
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) |
|
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) |
|
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) |
|
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) |
|
return cand |
|
|
|
|
|
def expand_dims(v, dims): |
|
""" |
|
Expand the tensor `v` to the dim `dims`. |
|
Args: |
|
`v`: a PyTorch tensor with shape [N]. |
|
`dim`: a `int`. |
|
Returns: |
|
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. |
|
""" |
|
return v[(...,) + (None,) * (dims - 1)] |
|
|