|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from diffusion.model.utils import * |
|
|
|
|
|
|
|
|
|
|
|
def edm_sampler( |
|
net, |
|
latents, |
|
class_labels=None, |
|
cfg_scale=None, |
|
randn_like=torch.randn_like, |
|
num_steps=18, |
|
sigma_min=0.002, |
|
sigma_max=80, |
|
rho=7, |
|
S_churn=0, |
|
S_min=0, |
|
S_max=float("inf"), |
|
S_noise=1, |
|
**kwargs |
|
): |
|
|
|
sigma_min = max(sigma_min, net.sigma_min) |
|
sigma_max = min(sigma_max, net.sigma_max) |
|
|
|
|
|
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device) |
|
t_steps = ( |
|
sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) |
|
) ** rho |
|
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) |
|
|
|
|
|
x_next = latents.to(torch.float64) * t_steps[0] |
|
for i, (t_cur, t_next) in tqdm(list(enumerate(zip(t_steps[:-1], t_steps[1:])))): |
|
x_cur = x_next |
|
|
|
|
|
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0 |
|
t_hat = net.round_sigma(t_cur + gamma * t_cur) |
|
x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur) |
|
|
|
|
|
denoised = net(x_hat.float(), t_hat, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64) |
|
d_cur = (x_hat - denoised) / t_hat |
|
x_next = x_hat + (t_next - t_hat) * d_cur |
|
|
|
|
|
if i < num_steps - 1: |
|
denoised = net(x_next.float(), t_next, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64) |
|
d_prime = (x_next - denoised) / t_next |
|
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) |
|
|
|
return x_next |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ablation_sampler( |
|
net, |
|
latents, |
|
class_labels=None, |
|
cfg_scale=None, |
|
feat=None, |
|
randn_like=torch.randn_like, |
|
num_steps=18, |
|
sigma_min=None, |
|
sigma_max=None, |
|
rho=7, |
|
solver="heun", |
|
discretization="edm", |
|
schedule="linear", |
|
scaling="none", |
|
epsilon_s=1e-3, |
|
C_1=0.001, |
|
C_2=0.008, |
|
M=1000, |
|
alpha=1, |
|
S_churn=0, |
|
S_min=0, |
|
S_max=float("inf"), |
|
S_noise=1, |
|
): |
|
assert solver in ["euler", "heun"] |
|
assert discretization in ["vp", "ve", "iddpm", "edm"] |
|
assert schedule in ["vp", "ve", "linear"] |
|
assert scaling in ["vp", "none"] |
|
|
|
|
|
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t**2) + beta_min * t) - 1) ** 0.5 |
|
vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t)) |
|
vp_sigma_inv = ( |
|
lambda beta_d, beta_min: lambda sigma: ((beta_min**2 + 2 * beta_d * (sigma**2 + 1).log()).sqrt() - beta_min) |
|
/ beta_d |
|
) |
|
ve_sigma = lambda t: t.sqrt() |
|
ve_sigma_deriv = lambda t: 0.5 / t.sqrt() |
|
ve_sigma_inv = lambda sigma: sigma**2 |
|
|
|
|
|
if sigma_min is None: |
|
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s) |
|
sigma_min = {"vp": vp_def, "ve": 0.02, "iddpm": 0.002, "edm": 0.002}[discretization] |
|
if sigma_max is None: |
|
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1) |
|
sigma_max = {"vp": vp_def, "ve": 100, "iddpm": 81, "edm": 80}[discretization] |
|
|
|
|
|
sigma_min = max(sigma_min, net.sigma_min) |
|
sigma_max = min(sigma_max, net.sigma_max) |
|
|
|
|
|
vp_beta_d = 2 * (np.log(sigma_min**2 + 1) / epsilon_s - np.log(sigma_max**2 + 1)) / (epsilon_s - 1) |
|
vp_beta_min = np.log(sigma_max**2 + 1) - 0.5 * vp_beta_d |
|
|
|
|
|
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device) |
|
if discretization == "vp": |
|
orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1) |
|
sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps) |
|
elif discretization == "ve": |
|
orig_t_steps = (sigma_max**2) * ((sigma_min**2 / sigma_max**2) ** (step_indices / (num_steps - 1))) |
|
sigma_steps = ve_sigma(orig_t_steps) |
|
elif discretization == "iddpm": |
|
u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device) |
|
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2 |
|
for j in torch.arange(M, 0, -1, device=latents.device): |
|
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt() |
|
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)] |
|
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)] |
|
else: |
|
assert discretization == "edm" |
|
sigma_steps = ( |
|
sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) |
|
) ** rho |
|
|
|
|
|
if schedule == "vp": |
|
sigma = vp_sigma(vp_beta_d, vp_beta_min) |
|
sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min) |
|
sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min) |
|
elif schedule == "ve": |
|
sigma = ve_sigma |
|
sigma_deriv = ve_sigma_deriv |
|
sigma_inv = ve_sigma_inv |
|
else: |
|
assert schedule == "linear" |
|
sigma = lambda t: t |
|
sigma_deriv = lambda t: 1 |
|
sigma_inv = lambda sigma: sigma |
|
|
|
|
|
if scaling == "vp": |
|
s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt() |
|
s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3) |
|
else: |
|
assert scaling == "none" |
|
s = lambda t: 1 |
|
s_deriv = lambda t: 0 |
|
|
|
|
|
t_steps = sigma_inv(net.round_sigma(sigma_steps)) |
|
t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])]) |
|
|
|
|
|
t_next = t_steps[0] |
|
x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next)) |
|
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): |
|
x_cur = x_next |
|
|
|
|
|
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0 |
|
t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur))) |
|
x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s( |
|
t_hat |
|
) * S_noise * randn_like(x_cur) |
|
|
|
|
|
h = t_next - t_hat |
|
denoised = net(x_hat.float() / s(t_hat), sigma(t_hat), class_labels, cfg_scale, feat=feat)["x"].to( |
|
torch.float64 |
|
) |
|
d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s( |
|
t_hat |
|
) / sigma(t_hat) * denoised |
|
x_prime = x_hat + alpha * h * d_cur |
|
t_prime = t_hat + alpha * h |
|
|
|
|
|
if solver == "euler" or i == num_steps - 1: |
|
x_next = x_hat + h * d_cur |
|
else: |
|
assert solver == "heun" |
|
denoised = net(x_prime.float() / s(t_prime), sigma(t_prime), class_labels, cfg_scale, feat=feat)["x"].to( |
|
torch.float64 |
|
) |
|
d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv( |
|
t_prime |
|
) * s(t_prime) / sigma(t_prime) * denoised |
|
x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime) |
|
|
|
return x_next |
|
|