|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from diffusers.models import AutoencoderKL |
|
from mmcv import Registry |
|
from termcolor import colored |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, T5EncoderModel, T5Tokenizer |
|
from transformers import logging as transformers_logging |
|
|
|
from diffusion.model.dc_ae.efficientvit.ae_model_zoo import DCAE_HF |
|
from diffusion.model.utils import set_fp32_attention, set_grad_checkpoint |
|
|
|
MODELS = Registry("models") |
|
|
|
transformers_logging.set_verbosity_error() |
|
|
|
|
|
def build_model(cfg, use_grad_checkpoint=False, use_fp32_attention=False, gc_step=1, **kwargs): |
|
if isinstance(cfg, str): |
|
cfg = dict(type=cfg) |
|
model = MODELS.build(cfg, default_args=kwargs) |
|
|
|
if use_grad_checkpoint: |
|
set_grad_checkpoint(model, gc_step=gc_step) |
|
if use_fp32_attention: |
|
set_fp32_attention(model) |
|
return model |
|
|
|
|
|
def get_tokenizer_and_text_encoder(name="T5", device="cuda"): |
|
text_encoder_dict = { |
|
"T5": "DeepFloyd/t5-v1_1-xxl", |
|
"T5-small": "google/t5-v1_1-small", |
|
"T5-base": "google/t5-v1_1-base", |
|
"T5-large": "google/t5-v1_1-large", |
|
"T5-xl": "google/t5-v1_1-xl", |
|
"T5-xxl": "google/t5-v1_1-xxl", |
|
"gemma-2b": "google/gemma-2b", |
|
"gemma-2b-it": "google/gemma-2b-it", |
|
"gemma-2-2b": "google/gemma-2-2b", |
|
"gemma-2-2b-it": "google/gemma-2-2b-it", |
|
"gemma-2-9b": "google/gemma-2-9b", |
|
"gemma-2-9b-it": "google/gemma-2-9b-it", |
|
"Qwen2-0.5B-Instruct": "Qwen/Qwen2-0.5B-Instruct", |
|
"Qwen2-1.5B-Instruct": "Qwen/Qwen2-1.5B-Instruct", |
|
} |
|
assert name in list(text_encoder_dict.keys()), f"not support this text encoder: {name}" |
|
if "T5" in name: |
|
tokenizer = T5Tokenizer.from_pretrained(text_encoder_dict[name]) |
|
text_encoder = T5EncoderModel.from_pretrained(text_encoder_dict[name], torch_dtype=torch.float16).to(device) |
|
elif "gemma" in name or "Qwen" in name: |
|
tokenizer = AutoTokenizer.from_pretrained(text_encoder_dict[name]) |
|
tokenizer.padding_side = "right" |
|
text_encoder = ( |
|
AutoModelForCausalLM.from_pretrained(text_encoder_dict[name], torch_dtype=torch.bfloat16) |
|
.get_decoder() |
|
.to(device) |
|
) |
|
else: |
|
print("error load text encoder") |
|
exit() |
|
|
|
return tokenizer, text_encoder |
|
|
|
|
|
def get_vae(name, model_path, device="cuda"): |
|
if name == "sdxl" or name == "sd3": |
|
vae = AutoencoderKL.from_pretrained(model_path).to(device).to(torch.float16) |
|
if name == "sdxl": |
|
vae.config.shift_factor = 0 |
|
return vae |
|
elif "dc-ae" in name: |
|
print(colored(f"[DC-AE] Loading model from {model_path}", attrs=["bold"])) |
|
dc_ae = DCAE_HF.from_pretrained(model_path).to(device).eval() |
|
return dc_ae |
|
else: |
|
print("error load vae") |
|
exit() |
|
|
|
|
|
def vae_encode(name, vae, images, sample_posterior, device): |
|
if name == "sdxl" or name == "sd3": |
|
posterior = vae.encode(images.to(device)).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
z = (z - vae.config.shift_factor) * vae.config.scaling_factor |
|
elif "dc-ae" in name: |
|
ae = vae |
|
z = ae.encode(images.to(device)) |
|
z = z * ae.cfg.scaling_factor |
|
else: |
|
print("error load vae") |
|
exit() |
|
return z |
|
|
|
|
|
def vae_decode(name, vae, latent): |
|
if name == "sdxl" or name == "sd3": |
|
latent = (latent.detach() / vae.config.scaling_factor) + vae.config.shift_factor |
|
samples = vae.decode(latent).sample |
|
elif "dc-ae" in name: |
|
ae = vae |
|
samples = ae.decode(latent.detach() / ae.cfg.scaling_factor) |
|
else: |
|
print("error load vae") |
|
exit() |
|
return samples |
|
|