File size: 6,169 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
Generate prompts for evaluation
"""

import argparse
import json
import os

import numpy as np
import yaml

# Load classnames

with open("object_names.txt") as cls_file:
    classnames = [line.strip() for line in cls_file]

# Proper a vs an


def with_article(name: str):
    if name[0] in "aeiou":
        return f"an {name}"
    return f"a {name}"


# Proper plural


def make_plural(name: str):
    if name[-1] in "s":
        return f"{name}es"
    return f"{name}s"


# Generates single object samples


def generate_single_object_sample(rng: np.random.Generator, size: int = None):
    TAG = "single_object"
    if size > len(classnames):
        size = len(classnames)
        print(f"Not enough distinct classes, generating only {size} samples")
    return_scalar = size is None
    size = size or 1
    idxs = rng.choice(len(classnames), size=size, replace=False)
    samples = [
        dict(
            tag=TAG,
            include=[{"class": classnames[idx], "count": 1}],
            prompt=f"a photo of {with_article(classnames[idx])}",
        )
        for idx in idxs
    ]
    if return_scalar:
        return samples[0]
    return samples


# Generate two object samples


def generate_two_object_sample(rng: np.random.Generator):
    TAG = "two_object"
    idx_a, idx_b = rng.choice(len(classnames), size=2, replace=False)
    return dict(
        tag=TAG,
        include=[{"class": classnames[idx_a], "count": 1}, {"class": classnames[idx_b], "count": 1}],
        prompt=f"a photo of {with_article(classnames[idx_a])} and {with_article(classnames[idx_b])}",
    )


# Generate counting samples

numbers = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"]


def generate_counting_sample(rng: np.random.Generator, max_count=4):
    TAG = "counting"
    idx = rng.choice(len(classnames))
    num = int(rng.integers(2, max_count, endpoint=True))
    return dict(
        tag=TAG,
        include=[{"class": classnames[idx], "count": num}],
        exclude=[{"class": classnames[idx], "count": num + 1}],
        prompt=f"a photo of {numbers[num]} {make_plural(classnames[idx])}",
    )


# Generate color samples

colors = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black", "white"]


def generate_color_sample(rng: np.random.Generator):
    TAG = "colors"
    idx = rng.choice(len(classnames) - 1) + 1
    idx = (idx + classnames.index("person")) % len(classnames)  # No "[COLOR] person" prompts
    color = colors[rng.choice(len(colors))]
    return dict(
        tag=TAG,
        include=[{"class": classnames[idx], "count": 1, "color": color}],
        prompt=f"a photo of {with_article(color)} {classnames[idx]}",
    )


# Generate position samples

positions = ["left of", "right of", "above", "below"]


def generate_position_sample(rng: np.random.Generator):
    TAG = "position"
    idx_a, idx_b = rng.choice(len(classnames), size=2, replace=False)
    position = positions[rng.choice(len(positions))]
    return dict(
        tag=TAG,
        include=[
            {"class": classnames[idx_b], "count": 1},
            {"class": classnames[idx_a], "count": 1, "position": (position, 0)},
        ],
        prompt=f"a photo of {with_article(classnames[idx_a])} {position} {with_article(classnames[idx_b])}",
    )


# Generate color attribution samples


def generate_color_attribution_sample(rng: np.random.Generator):
    TAG = "color_attr"
    idxs = rng.choice(len(classnames) - 1, size=2, replace=False) + 1
    idx_a, idx_b = (idxs + classnames.index("person")) % len(classnames)  # No "[COLOR] person" prompts
    cidx_a, cidx_b = rng.choice(len(colors), size=2, replace=False)
    return dict(
        tag=TAG,
        include=[
            {"class": classnames[idx_a], "count": 1, "color": colors[cidx_a]},
            {"class": classnames[idx_b], "count": 1, "color": colors[cidx_b]},
        ],
        prompt=f"a photo of {with_article(colors[cidx_a])} {classnames[idx_a]} and {with_article(colors[cidx_b])} {classnames[idx_b]}",
    )


# Generate evaluation suite


def generate_suite(rng: np.random.Generator, n: int = 100, output_path: str = ""):
    samples = []
    # Generate single object samples for all COCO classnames
    samples.extend(generate_single_object_sample(rng, size=len(classnames)))
    # Generate two object samples (~100)
    for _ in range(n):
        samples.append(generate_two_object_sample(rng))
    # Generate counting samples
    for _ in range(n):
        samples.append(generate_counting_sample(rng, max_count=4))
    # Generate color samples
    for _ in range(n):
        samples.append(generate_color_sample(rng))
    # Generate position samples
    for _ in range(n):
        samples.append(generate_position_sample(rng))
    # Generate color attribution samples
    for _ in range(n):
        samples.append(generate_color_attribution_sample(rng))
    # De-duplicate
    unique_samples, used_samples = [], set()
    for sample in samples:
        sample_text = yaml.safe_dump(sample)
        if sample_text not in used_samples:
            unique_samples.append(sample)
            used_samples.add(sample_text)

    # Write to files
    os.makedirs(output_path, exist_ok=True)
    with open(os.path.join(output_path, "generation_prompts.txt"), "w") as fp:
        for sample in unique_samples:
            print(sample["prompt"], file=fp)
    with open(os.path.join(output_path, "evaluation_metadata.jsonl"), "w") as fp:
        for sample in unique_samples:
            print(json.dumps(sample), file=fp)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--seed", type=int, default=43, help="generation seed (default: 43)")
    parser.add_argument("--num-prompts", "-n", type=int, default=100, help="number of prompts per task (default: 100)")
    parser.add_argument(
        "--output-path",
        "-o",
        type=str,
        default="prompts",
        help="output folder for prompts and metadata (default: 'prompts/')",
    )
    args = parser.parse_args()
    rng = np.random.default_rng(args.seed)
    generate_suite(rng, args.num_prompts, args.output_path)