File size: 23,249 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import re
import subprocess
import tarfile
import time
import warnings
from dataclasses import dataclass, field

# from datetime import datetime
from typing import List, Optional

import pyrallis
import torch
from termcolor import colored
from torchvision.utils import save_image
from tqdm import tqdm

warnings.filterwarnings("ignore")  # ignore warning

from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
from tools.download import find_model


def set_env(seed=0, latent_size=256):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)
    for _ in range(30):
        torch.randn(1, 4, latent_size, latent_size)


def get_dict_chunks(data, bs):
    keys = []
    for k in data:
        keys.append(k)
        if len(keys) == bs:
            yield keys
            keys = []
    if keys:
        yield keys


def create_tar(data_path):
    tar_path = f"{data_path}.tar"
    with tarfile.open(tar_path, "w") as tar:
        tar.add(data_path, arcname=os.path.basename(data_path))
    print(f"Created tar file: {tar_path}")
    return tar_path


def delete_directory(exp_name):
    if os.path.exists(exp_name):
        subprocess.run(["rm", "-r", exp_name], check=True)
        print(f"Deleted directory: {exp_name}")


@torch.inference_mode()
def visualize(config, args, model, items, bs, sample_steps, cfg_scale, pag_scale=1.0):
    if isinstance(items, dict):
        get_chunks = get_dict_chunks
    else:
        from diffusion.data.datasets.utils import get_chunks

    generator = torch.Generator(device=device).manual_seed(args.seed)
    tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
    for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
        # data prepare
        prompts, hw, ar = (
            [],
            torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1),
            torch.tensor([[1.0]], device=device).repeat(bs, 1),
        )
        if bs == 1:
            prompt = data_dict[chunk[0]]["prompt"] if dict_prompt else chunk[0]
            prompt_clean, _, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device, show=False)
            latent_size_h, latent_size_w = (
                (int(hw[0, 0] // config.vae.vae_downsample_rate), int(hw[0, 1] // config.vae.vae_downsample_rate))
                if args.image_size == 1024
                else (latent_size, latent_size)
            )
            prompts.append(prompt_clean.strip())
        else:
            for data in chunk:
                prompt = data_dict[data]["prompt"] if dict_prompt else data
                prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip())
            latent_size_h, latent_size_w = latent_size, latent_size

        # check exists
        save_file_name = f"{chunk[0]}.jpg" if dict_prompt else f"{prompts[0][:100]}.jpg"
        save_path = os.path.join(save_root, save_file_name)
        if os.path.exists(save_path):
            # make sure the noise is totally same
            torch.randn(bs, config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator)
            continue

        # prepare text feature
        if not config.text_encoder.chi_prompt:
            max_length_all = config.text_encoder.model_max_length
            prompts_all = prompts
        else:
            chi_prompt = "\n".join(config.text_encoder.chi_prompt)
            prompts_all = [chi_prompt + prompt for prompt in prompts]
            num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
            max_length_all = (
                num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
            )  # magic number 2: [bos], [_]

        caption_token = tokenizer(
            prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt"
        ).to(device)
        select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0))
        caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
            :, :, select_index
        ]
        emb_masks = caption_token.attention_mask[:, select_index]
        null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]

        # start sampling
        with torch.no_grad():
            n = len(prompts)
            z = torch.randn(
                n,
                config.vae.vae_latent_dim,
                latent_size,
                latent_size,
                device=device,
                generator=generator,
            )
            model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)

            if args.sampling_algo == "dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    cfg_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
            elif args.sampling_algo == "sa-solver":
                sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
                samples = sa_solver.sample(
                    S=25,
                    batch_size=n,
                    shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
                    eta=1,
                    conditioning=caption_embs,
                    unconditional_conditioning=null_y,
                    unconditional_guidance_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )[0]
            elif args.sampling_algo == "flow_euler":
                flow_solver = FlowEuler(
                    model, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs
                )
                samples = flow_solver.sample(
                    z,
                    steps=sample_steps,
                )
            elif args.sampling_algo == "flow_dpm-solver":
                dpm_solver = DPMS(
                    model,
                    condition=caption_embs,
                    uncondition=null_y,
                    guidance_type=guidance_type,
                    cfg_scale=cfg_scale,
                    pag_scale=pag_scale,
                    pag_applied_layers=pag_applied_layers,
                    model_type="flow",
                    model_kwargs=model_kwargs,
                    schedule="FLOW",
                    interval_guidance=args.interval_guidance,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform_flow",
                    method="multistep",
                    flow_shift=flow_shift,
                )
            else:
                raise ValueError(f"{args.sampling_algo} is not defined")

        samples = samples.to(weight_dtype)
        samples = vae_decode(config.vae.vae_type, vae, samples)
        torch.cuda.empty_cache()

        os.umask(0o000)
        for i, sample in enumerate(samples):
            save_file_name = f"{chunk[i]}.jpg" if dict_prompt else f"{prompts[i][:100]}.jpg"
            save_path = os.path.join(save_root, save_file_name)
            # logger.info(f"Saving path: {save_path}")
            save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, help="config")
    return parser.parse_known_args()[0]


@dataclass
class SanaInference(SanaConfig):
    config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml"  # config
    model_path: Optional[str] = "hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth"
    work_dir: str = "output/inference"
    version: str = "sigma"
    txt_file: str = "asset/samples_mini.txt"
    json_file: Optional[str] = None
    sample_nums: int = 100_000
    bs: int = 1
    cfg_scale: float = 4.5
    pag_scale: float = 1.0
    sampling_algo: str = "flow_dpm-solver"
    seed: int = 0
    dataset: str = "custom"
    step: int = -1
    add_label: str = ""
    tar_and_del: bool = False
    exist_time_prefix: str = ""
    gpu_id: int = 0
    custom_image_size: Optional[int] = None
    start_index: int = 0
    end_index: int = 30_000
    interval_guidance: List[float] = field(default_factory=lambda: [0, 1])
    ablation_selections: Optional[List[float]] = None
    ablation_key: Optional[str] = None
    debug: bool = False
    if_save_dirname: bool = False


if __name__ == "__main__":

    args = get_args()
    config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)

    args.image_size = config.model.image_size
    if args.custom_image_size:
        args.image_size = args.custom_image_size
        print(f"custom_image_size: {args.image_size}")

    set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger = get_root_logger()

    # only support fixed latent size currently
    latent_size = args.image_size // config.vae.vae_downsample_rate
    max_sequence_length = config.text_encoder.model_max_length
    pe_interpolation = config.model.pe_interpolation
    micro_condition = config.model.micro_condition
    flow_shift = config.scheduler.flow_shift
    pag_applied_layers = config.model.pag_applied_layers
    guidance_type = "classifier-free_PAG"
    assert (
        isinstance(args.interval_guidance, list)
        and len(args.interval_guidance) == 2
        and args.interval_guidance[0] <= args.interval_guidance[1]
    )
    args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
    sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
    sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
    if config.model.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif config.model.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
    elif config.model.mixed_precision == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
    logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")

    vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
    tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)

    null_caption_token = tokenizer(
        "", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
    ).to(device)
    null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]

    # model setting
    pred_sigma = getattr(config.scheduler, "pred_sigma", True)
    learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
    model_kwargs = {
        "pe_interpolation": config.model.pe_interpolation,
        "config": config,
        "model_max_length": config.text_encoder.model_max_length,
        "qk_norm": config.model.qk_norm,
        "micro_condition": config.model.micro_condition,
        "caption_channels": text_encoder.config.hidden_size,
        "y_norm": config.text_encoder.y_norm,
        "attn_type": config.model.attn_type,
        "ffn_type": config.model.ffn_type,
        "mlp_ratio": config.model.mlp_ratio,
        "mlp_acts": list(config.model.mlp_acts),
        "in_channels": config.vae.vae_latent_dim,
        "y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
        "use_pe": config.model.use_pe,
        "linear_head_dim": config.model.linear_head_dim,
        "pred_sigma": pred_sigma,
        "learn_sigma": learn_sigma,
    }
    model = build_model(
        config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
    ).to(device)
    # model = build_model(config.model, **model_kwargs).to(device)
    logger.info(
        f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
    )
    logger.info("Generating sample from ckpt: %s" % args.model_path)
    state_dict = find_model(args.model_path)
    if "pos_embed" in state_dict["state_dict"]:
        del state_dict["state_dict"]["pos_embed"]

    missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
    logger.warning(f"Missing keys: {missing}")
    logger.warning(f"Unexpected keys: {unexpected}")
    model.eval().to(weight_dtype)
    base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
    args.sampling_algo = (
        args.sampling_algo
        if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
        else "flow_euler"
    )

    if args.work_dir is None:
        work_dir = (
            f"/{os.path.join(*args.model_path.split('/')[:-2])}"
            if args.model_path.startswith("/")
            else os.path.join(*args.model_path.split("/")[:-2])
        )
        img_save_dir = os.path.join(str(work_dir), "vis")
    else:
        img_save_dir = args.work_dir

    logger.info(colored(f"Saving images at {img_save_dir}", "green"))
    dict_prompt = args.json_file is not None
    if dict_prompt:
        data_dict = json.load(open(args.json_file))
        items = list(data_dict.keys())
    else:
        with open(args.txt_file) as f:
            items = [item.strip() for item in f.readlines()]
    logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples")
    items = items[: max(0, args.sample_nums)]
    items = items[max(0, args.start_index) : min(len(items), args.end_index)]

    match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
    epoch_name, step_name = match.groups() if match else ("unknown", "unknown")

    os.umask(0o000)
    os.makedirs(img_save_dir, exist_ok=True)
    logger.info(f"Sampler {args.sampling_algo}")

    def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
        save_root = os.path.join(
            img_save_dir,
            # f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
            f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
            f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}"
            f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
        )

        if args.pag_scale != 1.0:
            save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
        if flow_shift != 1.0:
            save_root += f"_flowshift{flow_shift}"
        if guidance_type != "classifier-free":
            save_root += f"_{guidance_type}"
        if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
            save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"

        save_root += f"_imgnums{args.sample_nums}" + args.add_label
        return save_root

    def guidance_type_select(default_guidance_type, pag_scale, attn_type):
        guidance_type = default_guidance_type
        if not (pag_scale > 1.0 and attn_type == "linear"):
            logger.info("Setting back to classifier-free")
            guidance_type = "classifier-free"
        return guidance_type

    dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset
    if args.ablation_selections and args.ablation_key:
        for ablation_factor in args.ablation_selections:
            setattr(args, args.ablation_key, eval(ablation_factor))
            print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
            sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
            guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)

            save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
            os.makedirs(save_root, exist_ok=True)
            if args.if_save_dirname and args.gpu_id == 0:
                # save at work_dir/metrics/tmp_xxx.txt for metrics testing
                with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                    print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                    f.write(os.path.basename(save_root))
            logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

            visualize(
                config=config,
                args=args,
                model=model,
                items=items,
                bs=args.bs,
                sample_steps=sample_steps,
                cfg_scale=args.cfg_scale,
                pag_scale=args.pag_scale,
            )
    else:
        guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
        logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

        save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
        os.makedirs(save_root, exist_ok=True)
        if args.if_save_dirname and args.gpu_id == 0:
            # save at work_dir/metrics/tmp_xxx.txt for metrics testing
            with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                f.write(os.path.basename(save_root))

        if args.debug:
            items = [
                'a blackboard wrote text "Hello World"'
                'Text" Super Dad Mode ON", t shirt design, This is a graffiti-style image.The letters are surrounded by a playful, abstract design of paw prints and pet-related shapes, such as a heart-shaped bone and a cat-whisker-shaped element.',
                '"NR Beauty Hair" logo para peluqueria, product, typography, fashion, painting',
                'Text"Goblins gone wild.", The text is written in an elegant, vintage-inspired font and each letter in the text showed in different colors.',
                "An awe-inspiring 3D render of the mahir Olympics logo, set against the backdrop of a fiery, burning Olympic flame. The flames dance and intertwine to form the iconic Olympic rings and typography, while the Eiffel Tower stands tall in the distance. The cinematic-style poster is rich in color and detail, evoking a sense of excitement and anticipation for the upcoming games., ukiyo-e, vibrant, cinematic, 3d render, typography, poster",
                'Cute cartoon back style of a couple, wearing a black t shirts , she have long hair with the name "C". He have staright hair and light beard with the name "J"white color,heart snowy atmosphere, typography, 3d render, portrait photography, fashion',
                'A captivating 3D render of a whimsical, colorful scene, featuring the word "Muhhh" spelled out in vibrant, floating balloons. The wordmark hovers above a lush, emerald green field. A charming, anthropomorphic rabbit with a wide smile and twinkling eyes hops alongside the balloon letters. The background showcases a serene, dreamy sky with soft pastel hues, creating an overall atmosphere of joy, enchantment, and surrealism. The 3D render is a stunning illustration that blends fantasy and realism effortlessly., illustration, 3d render',
                'create a logo for a company named "FUN"',
                "A stunningly realistic image of an Asian woman sitting on a plush sofa, completely engrossed in a book. She is wearing cozy loungewear and has headphones on, indicating her desire for a serene and quiet environment. In one hand, she holds a can of water, providing a refreshing sensation. The adjacent table features an array of snacks and books, adding to the cozy ambiance of the scene. The room is filled with natural light streaming through vibrantly decorated windows, and tasteful decorations contribute to the overall relaxing and soothing atmosphere.",
                'A captivating 3D logo illustration of the name "ANGEL" in a romantic and enchanting Follow my Page poster design. The lettering is adorned with a majestic, shimmering crown encrusted with intricate gemstones. Swirling pink and purple patterns, reminiscent of liquid or air, surround the crown, with beautiful pink flowers in full bloom and bud adorning the design. Heart-shaped decorations enhance the romantic ambiance, and a large, iridescent butterfly with intricate wings graces the right side of the crown. The muted purple background contrasts with the bright and lively elements within the composition, creating a striking visual effect. The 3D rendering showcases the intricate details and depth of the design, making it a truly mesmerizing piece of typography, 3D render, and illustration art., illustration, typography, poster, 3d render',
                'A human wearing a T-shirt with Text "NVIDIA" and logo',
                'Logo with text "Hi"',
            ]
        visualize(
            config=config,
            args=args,
            model=model,
            items=items,
            bs=args.bs,
            sample_steps=sample_steps,
            cfg_scale=args.cfg_scale,
            pag_scale=args.pag_scale,
        )

        if args.tar_and_del:
            create_tar(save_root)
            delete_directory(save_root)

    print(
        colored(f"Sana inference has finished. Results stored at ", "green"),
        colored(f"{img_save_dir}", attrs=["bold"]),
        ".",
    )