File size: 5,462 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2024 MIT Han Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from typing import Optional

import ipdb
import torch
from torch import nn
from torch.nn import functional as F

from .triton_lite_mla_kernels.linear_relu_fwd import linear_relu_fwd
from .triton_lite_mla_kernels.mm import matmul  # for autocast
from .triton_lite_mla_kernels.pad_vk_mm_fwd import pad_vk_mm_fwd
from .triton_lite_mla_kernels.proj_divide_bwd import proj_divide_bwd
from .triton_lite_mla_kernels.vk_mm_relu_bwd import vk_mm_relu_bwd
from .triton_lite_mla_kernels.vk_q_mm_divide_fwd import vk_q_mm_divide_fwd
from .triton_lite_mla_kernels.vk_q_mm_relu_bwd import vk_q_mm_relu_bwd


class TritonLiteMLAFunction(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        x: torch.Tensor,
        qkv_weight: torch.Tensor,
        proj_weight: torch.Tensor,
        proj_bias: Optional[torch.Tensor],
        num_heads: int,
        head_dim: int,
        eps: float,
    ) -> torch.Tensor:
        ctx.x_dtype, ctx.qkv_weight_dtype, ctx.proj_dtype = x.dtype, qkv_weight.dtype, proj_weight.dtype
        if torch.is_autocast_enabled():
            autocast_dtype = torch.get_autocast_gpu_dtype()
            x = x.to(autocast_dtype)
            qkv_weight = qkv_weight.to(autocast_dtype)
            proj_weight = proj_weight.to(autocast_dtype)
            if proj_bias is not None:
                proj_bias = proj_bias.to(autocast_dtype)
        B, N, C = x.shape
        qkv, relu_mask = linear_relu_fwd(x, qkv_weight)  # B, N, 3*C. autocast is processed here
        qkv, relu_mask = qkv.view(B, N, 3, C), relu_mask.view(B, N, 3, C)
        q, k, v = qkv.unbind(2)  # B, N, C
        k = k.reshape(B, N, num_heads, head_dim)
        v = v.reshape(B, N, num_heads, head_dim)
        q = q.reshape(B, N, num_heads, head_dim)
        vk = pad_vk_mm_fwd(v, k, torch.float, torch.float)
        proj_input, vk_q = vk_q_mm_divide_fwd(vk, q, eps, torch.float, qkv.dtype)
        proj_input = proj_input.view(B, N, C)
        y = F.linear(proj_input, proj_weight, proj_bias)
        if ctx.needs_input_grad[0] or ctx.needs_input_grad[1] or ctx.needs_input_grad[2] or ctx.needs_input_grad[3]:
            ctx.save_for_backward(x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight)
            ctx.eps = eps
        if torch.get_autocast_gpu_dtype() == torch.float16:
            y = y.clip(-65504, 65504)
        return y

    @staticmethod
    def backward(ctx, grad_y: torch.Tensor):
        x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight = ctx.saved_tensors
        B, N, H, C1 = vk_q.shape
        C = C1 - 1

        # ipdb.set_trace()
        grad_proj_weight = (
            (grad_y.reshape(-1, H * C).T @ proj_input.view(-1, H * C)).to(ctx.proj_dtype)
            if ctx.needs_input_grad[2]
            else None
        )
        grad_proj_bias = grad_y.sum((0, 1)).to(ctx.proj_dtype) if ctx.needs_input_grad[3] else None
        #
        grad_vk_q = proj_divide_bwd(grad_y, proj_weight, vk_q, ctx.eps)
        del grad_y, vk_q

        grad_qkv = torch.empty(B, N, 3, H, C, dtype=q.dtype, device=q.device)
        grad_vk = vk_q_mm_relu_bwd(grad_vk_q, vk, q, relu_mask[:, :, 0].view(B, N, H, C), grad_qkv[:, :, 0])
        del grad_vk_q, vk

        vk_mm_relu_bwd(grad_vk, k, v, relu_mask[:, :, 1].view(B, N, H, C), grad_qkv[:, :, 1], grad_qkv[:, :, 2])
        del grad_vk, q, k, v, relu_mask

        grad_qkv_weight = (
            (grad_qkv.view(B * N, 3 * H * C).T @ x.view(B * N, H * C)).to(ctx.qkv_weight_dtype)
            if ctx.needs_input_grad[1]
            else None
        )
        grad_x = (grad_qkv.view(B, N, 3 * H * C) @ qkv_weight).to(ctx.x_dtype) if ctx.needs_input_grad[0] else None
        del grad_qkv

        return grad_x, grad_qkv_weight, grad_proj_weight, grad_proj_bias, None, None, None


class TritonLiteMLA(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        eps=1e-15,
        use_bias=False,
    ):
        super().__init__()
        self.dim, self.num_heads, self.head_dim, self.eps = dim, num_heads, dim // num_heads, eps
        if use_bias:
            raise NotImplementedError(f"use_bias is not supported for TritonLiteMLA")
        self.qkv = nn.Linear(dim, dim * 3, bias=use_bias)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor:
        return TritonLiteMLAFunction.apply(
            x, self.qkv.weight, self.proj.weight, self.proj.bias, self.num_heads, self.head_dim, self.eps
        )

    @property
    def module_str(self) -> str:
        _str = type(self).__name__ + "("
        eps = f"{self.eps:.1E}"
        _str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}"
        return _str

    def __repr__(self):
        return f"EPS{self.eps}-" + super().__repr__()