Spaces:
Running
Running
move model files outside the folder
Browse files- app.py +28 -1
- model/depth_estimation.py → depth_estimation.py +0 -0
- model/__init__.py +0 -28
- model/segmentation.py → segmentation.py +0 -0
app.py
CHANGED
@@ -1,5 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
color_maps = [
|
5 |
'viridis', 'plasma', 'inferno', 'magma', 'cividis',
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from PIL import Image
|
5 |
+
from segmentation import predict as segmentation_predict
|
6 |
+
from depth_estimation import predict as depth_estimation_predict
|
7 |
+
|
8 |
+
def predict(image, color_map):
|
9 |
+
# inference
|
10 |
+
|
11 |
+
mask_image = segmentation_predict(image)
|
12 |
+
|
13 |
+
segmented_image = Image.composite(
|
14 |
+
image,
|
15 |
+
Image.new("RGB", image.size, (0, 0, 0)),
|
16 |
+
mask_image.convert("L")
|
17 |
+
)
|
18 |
+
|
19 |
+
depth_image = depth_estimation_predict(segmented_image)
|
20 |
+
|
21 |
+
# apply matplotlib colormap (e.g., viridis)
|
22 |
+
depth_array = np.array(depth_image) # Convert PIL image to NumPy array
|
23 |
+
colormap = plt.get_cmap(color_map) # Choose a colormap
|
24 |
+
depth_colored = colormap(depth_array[:, :, 0] / 255.0) # Normalize and apply colormap
|
25 |
+
depth_colored = (depth_colored * 255).astype(np.uint8) # Convert to RGB (discard alpha)
|
26 |
+
|
27 |
+
depth_colored = Image.fromarray(depth_colored)
|
28 |
+
|
29 |
+
return depth_colored
|
30 |
|
31 |
color_maps = [
|
32 |
'viridis', 'plasma', 'inferno', 'magma', 'cividis',
|
model/depth_estimation.py → depth_estimation.py
RENAMED
File without changes
|
model/__init__.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
from segmentation import predict as segmentation_predict
|
5 |
-
from depth_estimation import predict as depth_estimation_predict
|
6 |
-
|
7 |
-
def predict(image, color_map):
|
8 |
-
# inference
|
9 |
-
|
10 |
-
mask_image = segmentation_predict(image)
|
11 |
-
|
12 |
-
segmented_image = Image.composite(
|
13 |
-
image,
|
14 |
-
Image.new("RGB", image.size, (0, 0, 0)),
|
15 |
-
mask_image.convert("L")
|
16 |
-
)
|
17 |
-
|
18 |
-
depth_image = depth_estimation_predict(segmented_image)
|
19 |
-
|
20 |
-
# apply matplotlib colormap (e.g., viridis)
|
21 |
-
depth_array = np.array(depth_image) # Convert PIL image to NumPy array
|
22 |
-
colormap = plt.get_cmap(color_map) # Choose a colormap
|
23 |
-
depth_colored = colormap(depth_array[:, :, 0] / 255.0) # Normalize and apply colormap
|
24 |
-
depth_colored = (depth_colored * 255).astype(np.uint8) # Convert to RGB (discard alpha)
|
25 |
-
|
26 |
-
depth_colored = Image.fromarray(depth_colored)
|
27 |
-
|
28 |
-
return depth_colored
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/segmentation.py → segmentation.py
RENAMED
File without changes
|