RathodHarish's picture
Update app.py
fcdc0cf verified
raw
history blame
7.53 kB
import gradio as gr
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
from transformers import pipeline
import soundfile as sf
import torch
from tenacity import retry, stop_after_attempt, wait_fixed
# Initialize local models with retry logic
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_whisper_model():
try:
# Whisper for speech-to-text (English-only)
model = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny.en",
device=-1, # CPU; use device=0 for GPU if available
model_kwargs={"use_safetensors": True}
)
print("Whisper model loaded successfully.")
return model
except Exception as e:
print(f"Failed to load Whisper model: {str(e)}")
raise
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_symptom_model():
try:
# Symptom-2-Disease for health analysis
model = pipeline(
"text-classification",
model="abhirajeshbhai/symptom-2-disease-net",
device=-1, # CPU
model_kwargs={"use_safetensors": True}
)
print("Symptom-2-Disease model loaded successfully.")
return model
except Exception as e:
print(f"Failed to load Symptom-2-Disease model: {str(e)}")
raise
whisper = None
symptom_classifier = None
try:
whisper = load_whisper_model()
except Exception as e:
print(f"Whisper model initialization failed after retries: {str(e)}")
try:
symptom_classifier = load_symptom_model()
except Exception as e:
print(f"Symptom-2-Disease model initialization failed after retries: {str(e)}")
def compute_file_hash(file_path):
"""Compute MD5 hash of a file to check uniqueness."""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def transcribe_audio(audio_file):
"""Transcribe audio using local Whisper model."""
if not whisper:
return "Error: Whisper model not loaded. Check logs for details or ensure sufficient compute resources."
try:
# Load and validate audio
audio, sr = librosa.load(audio_file, sr=16000)
if len(audio) < 1600: # Less than 0.1s
return "Error: Audio too short. Please provide audio of at least 1 second."
if np.max(np.abs(audio)) < 1e-4: # Too quiet
return "Error: Audio too quiet. Please provide clear audio describing symptoms in English."
# Save as WAV for Whisper
temp_wav = f"/tmp/{os.path.basename(audio_file)}.wav"
sf.write(temp_wav, audio, sr)
# Transcribe with beam search for accuracy
with torch.no_grad():
result = whisper(temp_wav, generate_kwargs={"num_beams": 5})
transcription = result.get("text", "").strip()
print(f"Transcription: {transcription}")
# Clean up temp file
try:
os.remove(temp_wav)
except Exception:
pass
if not transcription:
return "Transcription empty. Please provide clear audio describing symptoms in English."
# Check for repetitive transcription
words = transcription.split()
if len(words) > 5 and len(set(words)) < len(words) / 2:
return "Error: Transcription appears repetitive. Please provide clear, non-repetitive audio describing symptoms."
return transcription
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def analyze_symptoms(text):
"""Analyze symptoms using local Symptom-2-Disease model."""
if not symptom_classifier:
return "Error: Symptom-2-Disease model not loaded. Check logs for details or ensure sufficient compute resources.", 0.0
try:
if not text or "Error transcribing" in text:
return "No valid transcription for analysis.", 0.0
with torch.no_grad():
result = symptom_classifier(text)
if result and isinstance(result, list) and len(result) > 0:
prediction = result[0]["label"]
score = result[0]["score"]
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
return prediction, score
return "No health condition predicted", 0.0
except Exception as e:
return f"Error analyzing symptoms: {str(e)}", 0.0
def analyze_voice(audio_file):
"""Analyze voice for health indicators."""
try:
# Ensure unique file name to avoid Gradio reuse
unique_path = f"/tmp/gradio/{datetime.now().strftime('%Y%m%d%H%M%S%f')}_{os.path.basename(audio_file)}"
os.rename(audio_file, unique_path)
audio_file = unique_path
# Log audio file info
file_hash = compute_file_hash(audio_file)
print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
# Load audio to verify format
audio, sr = librosa.load(audio_file, sr=16000)
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
# Transcribe audio
transcription = transcribe_audio(audio_file)
if "Error transcribing" in transcription:
return transcription
# Analyze symptoms
prediction, score = analyze_symptoms(transcription)
if "Error analyzing" in prediction:
return prediction
# Generate feedback
if prediction == "No health condition predicted":
feedback = "No significant health indicators detected."
else:
feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
# Clean up temporary audio file
try:
os.remove(audio_file)
print(f"Deleted temporary audio file: {audio_file}")
except Exception as e:
print(f"Failed to delete audio file: {str(e)}")
return feedback
except Exception as e:
return f"Error processing audio: {str(e)}"
def test_with_sample_audio():
"""Test the app with sample audio files."""
samples = ["audio_samples/sample.wav", "audio_samples/common_voice_en.wav"]
results = []
for sample in samples:
if os.path.exists(sample):
results.append(analyze_voice(sample))
else:
results.append(f"Sample not found: {sample}")
return "\n".join(results)
# Gradio interface
iface = gr.Interface(
fn=analyze_voice,
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
outputs=gr.Textbox(label="Health Assessment Feedback"),
title="Health Voice Analyzer",
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English. Use clear audio (WAV, 16kHz) describing symptoms like 'I have a cough.'"
)
if __name__ == "__main__":
print(test_with_sample_audio())
iface.launch(server_name="0.0.0.0", server_port=7860)